{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f38f2359e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674005279623493985, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAADH+L3S368/osDbvk/8Ob7QHA++QmyYvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpg7yevCUcECUhpRSlIwBbJRNrQKMAXSUR0CgsQ2Pkq+bdX2UKGgGaAloD0MIaObJNYVSbkCUhpRSlGgVTXsBaBZHQKCySH3UQTV1fZQoaAZoCWgPQwhvK702G3BxQJSGlFKUaBVNdwFoFkdAoLQNmz0HyHV9lChoBmgJaA9DCJQyqaENQArAlIaUUpRoFU0xAWgWR0CgtPXtShrWdX2UKGgGaAloD0MIngjiPBwObkCUhpRSlGgVTXsBaBZHQKC2LlhgE2Z1fZQoaAZoCWgPQwga3xeXKsBpQJSGlFKUaBVNbgFoFkdAoLgIJswcpHV9lChoBmgJaA9DCOXuc3w0vW1AlIaUUpRoFU1zAWgWR0CguTAvcrRTdX2UKGgGaAloD0MIHCRE+YLWKcCUhpRSlGgVTQ8BaBZHQKC5/UgjhUB1fZQoaAZoCWgPQwiMKy6Oyu03wJSGlFKUaBVNKQFoFkdAoLt4Ju2qk3V9lChoBmgJaA9DCPKU1XQ9SGtAlIaUUpRoFU2IAWgWR0CgvLmGVRk3dX2UKGgGaAloD0MISE4mbpXrakCUhpRSlGgVTZoBaBZHQKC+HQ79ycV1fZQoaAZoCWgPQwgyBWuczbluQJSGlFKUaBVNwgFoFkdAoMBcEvCdjHV9lChoBmgJaA9DCOv/HOaLGHFAlIaUUpRoFU2cAWgWR0CgwbzLGJemdX2UKGgGaAloD0MIqFZfXZWob0CUhpRSlGgVTakBaBZHQKDDvBEa2nd1fZQoaAZoCWgPQwi2Z5YEKBNsQJSGlFKUaBVNlAFoFkdAoMUZftx+8XV9lChoBmgJaA9DCJ1Jm6p7I3FAlIaUUpRoFU24AWgWR0CgxoOOKfnPdX2UKGgGaAloD0MI7gkS212UbkCUhpRSlGgVTYwBaBZHQKDIbFzdUKl1fZQoaAZoCWgPQwgaFqOute1sQJSGlFKUaBVNiAFoFkdAoMmzpA2Q4nV9lChoBmgJaA9DCITTghd9yW9AlIaUUpRoFU16AWgWR0Cgy3EfLcKxdX2UKGgGaAloD0MIwRw9fu8hbkCUhpRSlGgVTZcBaBZHQKDMykKu0Tl1fZQoaAZoCWgPQwhhMlUwqnNsQJSGlFKUaBVNmwFoFkdAoM45jx0+1XV9lChoBmgJaA9DCMy4qYHmOHBAlIaUUpRoFU3hAWgWR0Cg0ExtYSxrdX2UKGgGaAloD0MIU9DtJY1Mb0CUhpRSlGgVTccBaBZHQKDRpvAoG6h1fZQoaAZoCWgPQwjbGaa2VHhpQJSGlFKUaBVNhAFoFkdAoNORhKDkEXV9lChoBmgJaA9DCLSvPEhPlTbAlIaUUpRoFU1IAWgWR0Cg1I2bobGWdX2UKGgGaAloD0MIDycwnVZCcUCUhpRSlGgVTWIBaBZHQKDVobjtG/h1fZQoaAZoCWgPQwibWrbWl9BuQJSGlFKUaBVNigFoFkdAoNeVFH8TBnV9lChoBmgJaA9DCJW5+Ua0NXBAlIaUUpRoFU2PAWgWR0Cg2N642CNCdX2UKGgGaAloD0MIc9h9x/CbbECUhpRSlGgVTZoBaBZHQKDaOvysjml1fZQoaAZoCWgPQwiAgLVq19pkQJSGlFKUaBVNLwJoFkdAoNzfyNGViXV9lChoBmgJaA9DCA/UKY/usW9AlIaUUpRoFU2lAWgWR0Cg3jLTpgTidX2UKGgGaAloD0MIAALWql0kbUCUhpRSlGgVTYYBaBZHQKDgKHKOktV1fZQoaAZoCWgPQwjjOPBqOcRuQJSGlFKUaBVNkAFoFkdAoOGOeMAFPnV9lChoBmgJaA9DCIPAyqFFWmxAlIaUUpRoFU1xAWgWR0Cg41WMCLdfdX2UKGgGaAloD0MI7pOjAJFgcECUhpRSlGgVTbgBaBZHQKDkpuFYdQx1fZQoaAZoCWgPQwh2VDVB1AxtQJSGlFKUaBVNlQFoFkdAoOXsUKzAvnV9lChoBmgJaA9DCNxmKsQjDm5AlIaUUpRoFU2BAWgWR0Cg58uctoSMdX2UKGgGaAloD0MIEwznGmaMcECUhpRSlGgVTXMBaBZHQKDo6Cf6Gg11fZQoaAZoCWgPQwhIpdjROKlvQJSGlFKUaBVNbAFoFkdAoOoEvVVghXV9lChoBmgJaA9DCBrEB3Y83HFAlIaUUpRoFU1dAWgWR0Cg66+ee4CqdX2UKGgGaAloD0MI0NVW7K9ubkCUhpRSlGgVTZIBaBZHQKDs5OhTOxB1fZQoaAZoCWgPQwhjJeZZiXZwQJSGlFKUaBVNXgFoFkdAoO6fRoh6jXV9lChoBmgJaA9DCFX5npEIr2tAlIaUUpRoFU16AWgWR0Cg79wr1/UfdX2UKGgGaAloD0MILCtNSsEXb0CUhpRSlGgVTR4CaBZHQKDxy5Fw1ix1fZQoaAZoCWgPQwh95xclaM5tQJSGlFKUaBVNaAFoFkdAoPOoT0xubnV9lChoBmgJaA9DCOiIfJdS6z3AlIaUUpRoFU1BAWgWR0Cg9KLTH80ldX2UKGgGaAloD0MIq1lnfF9sJECUhpRSlGgVTTsBaBZHQKD1kVQAMlV1fZQoaAZoCWgPQwi5NH7hFeZwQJSGlFKUaBVNeAFoFkdAoPdtARkEtHV9lChoBmgJaA9DCFdaRuq9aWRAlIaUUpRoFU2DAWgWR0Cg+MnuRcNZdX2UKGgGaAloD0MIj41AvK43cECUhpRSlGgVTYgBaBZHQKD6qaQ3gk11fZQoaAZoCWgPQwhjmX6J+FpuQJSGlFKUaBVNhgFoFkdAoPvfSjQAuXV9lChoBmgJaA9DCKg65GY41m5AlIaUUpRoFU2GAWgWR0Cg/RJGFzuGdX2UKGgGaAloD0MINpAuNq0EE0CUhpRSlGgVTSsBaBZHQKD+hqW1MM91fZQoaAZoCWgPQwg9YB4y5dsnwJSGlFKUaBVNPgFoFkdAoP+Hkkrwv3V9lChoBmgJaA9DCMeBV8udsmpAlIaUUpRoFU12AWgWR0ChAMDrAxi5dX2UKGgGaAloD0MIilkvhnLYbECUhpRSlGgVTYABaBZHQKECkxJul411fZQoaAZoCWgPQwhCBYcXhIZwQJSGlFKUaBVNZQFoFkdAoQPSgkC3gHV9lChoBmgJaA9DCHb7rDJTgW1AlIaUUpRoFU1sAWgWR0ChBPYraufVdX2UKGgGaAloD0MIWcNF7ul3b0CUhpRSlGgVTWYBaBZHQKEG0vEjxCp1fZQoaAZoCWgPQwgewY2ULZBtQJSGlFKUaBVNhwFoFkdAoQgWgSOBD3V9lChoBmgJaA9DCBztuOF38G1AlIaUUpRoFU2MAWgWR0ChCW8+A3DOdX2UKGgGaAloD0MIOWQD6eIOa0CUhpRSlGgVTYwBaBZHQKELaWIoE0V1fZQoaAZoCWgPQwhSuvQvyR5vQJSGlFKUaBVNowFoFkdAoQysvqTr3XV9lChoBmgJaA9DCKhzRSkhJW1AlIaUUpRoFU2TAWgWR0ChDpZa/yoXdX2UKGgGaAloD0MInnk57P65cECUhpRSlGgVTaUBaBZHQKEP0bOu7pV1fZQoaAZoCWgPQwjyKJXwRLJxQJSGlFKUaBVNjAFoFkdAoRD5L5AQhHV9lChoBmgJaA9DCFCOAkRBwWBAlIaUUpRoFU3oA2gWR0ChFU5HVf/ndX2UKGgGaAloD0MICHdn7bZTcECUhpRSlGgVTZ4BaBZHQKEXHTl1bJR1fZQoaAZoCWgPQwjMtP0ra7NwQJSGlFKUaBVNkQFoFkdAoRhWERJ2+3V9lChoBmgJaA9DCD6XqUlwEG1AlIaUUpRoFU2bAWgWR0ChGkC53C9AdX2UKGgGaAloD0MIdArysxFmcECUhpRSlGgVTVoBaBZHQKEbWlYU34t1fZQoaAZoCWgPQwhFEyhikWZrQJSGlFKUaBVNgAFoFkdAoRy7ot+TeXV9lChoBmgJaA9DCNkkP+IXd3FAlIaUUpRoFU2qAWgWR0ChHpO3lS0jdX2UKGgGaAloD0MIxVOPNLjBbkCUhpRSlGgVTdsBaBZHQKEgKJE6T4d1fZQoaAZoCWgPQwgEyxEy0EZwQJSGlFKUaBVN9gFoFkdAoSJZ0jkdWHV9lChoBmgJaA9DCEd3EDtTYWFAlIaUUpRoFU3oA2gWR0ChJwTpX6qLdX2UKGgGaAloD0MIzZIANbX3cECUhpRSlGgVTaMBaBZHQKEoWkLQXyl1fZQoaAZoCWgPQwgSoKaWrXtCQJSGlFKUaBVNLgFoFkdAoSlFIf8uSXV9lChoBmgJaA9DCP7yyYrhIWtAlIaUUpRoFU14AWgWR0ChKyTySV4YdX2UKGgGaAloD0MI1ZEjnYHJNUCUhpRSlGgVTRoBaBZHQKEr/YqXnhd1fZQoaAZoCWgPQwhVL7/TZOdtQJSGlFKUaBVNagFoFkdAoS0ibayrxXV9lChoBmgJaA9DCBGMg0uHFHBAlIaUUpRoFU13AWgWR0ChLtuh0yP/dX2UKGgGaAloD0MI7Ny0Ged5cECUhpRSlGgVTX4BaBZHQKEwBNhVlwt1fZQoaAZoCWgPQwhFaAQbV1dqQJSGlFKUaBVNZwFoFkdAoTE15dGAkXV9lChoBmgJaA9DCLjKEwi7gW5AlIaUUpRoFU2RAWgWR0ChMxnWBjFydX2UKGgGaAloD0MI0zJS7yl4cECUhpRSlGgVTW0BaBZHQKE0WOYplSV1fZQoaAZoCWgPQwgqOSf2UBFrQJSGlFKUaBVNhwFoFkdAoTZJuGbkO3V9lChoBmgJaA9DCISfOID+AG9AlIaUUpRoFU2/AWgWR0ChN9+TFERbdX2UKGgGaAloD0MIcD/ggYH/akCUhpRSlGgVTYgBaBZHQKE5F9YOlO51fZQoaAZoCWgPQwimZDkJpfRsQJSGlFKUaBVNfQFoFkdAoTsEhmoR7XV9lChoBmgJaA9DCMJqLGHtgWNAlIaUUpRoFU3oA2gWR0ChP486vJRwdX2UKGgGaAloD0MI3ZkJhvOCcECUhpRSlGgVTZcBaBZHQKFA0b0e2eB1fZQoaAZoCWgPQwg5XoHoydBuQJSGlFKUaBVNmwFoFkdAoUL9YhdMTXV9lChoBmgJaA9DCKYJ209GbGtAlIaUUpRoFU2LAWgWR0ChRGj6WPcSdX2UKGgGaAloD0MIFaxxNh3kbUCUhpRSlGgVTZgBaBZHQKFF2LNwBHV1fZQoaAZoCWgPQwgKKxVUVFZsQJSGlFKUaBVNzQFoFkdAoUgk580DU3V9lChoBmgJaA9DCKSOjqsR6m1AlIaUUpRoFU3CAWgWR0ChSij6Fds0dX2UKGgGaAloD0MIGF+0x4vUbECUhpRSlGgVTasBaBZHQKFNWTJyQxN1fZQoaAZoCWgPQwjFG5lHfupsQJSGlFKUaBVNjwFoFkdAoU/bZvkzXXV9lChoBmgJaA9DCMdJYd5jVm1AlIaUUpRoFU2fAWgWR0ChUgZRKpT/dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}