chore: add architectures for config
Browse files- config.json +11 -2
- src/demo.py +58 -0
- src/init_model.py +1 -1
config.json
CHANGED
@@ -1,4 +1,13 @@
|
|
1 |
{
|
2 |
"model_type": "onnx-base",
|
3 |
-
"
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
"model_type": "onnx-base",
|
3 |
+
"model_path": "model.onnx",
|
4 |
+
"architectures": ["ONNXBaseModel"],
|
5 |
+
"id2label": {
|
6 |
+
"0": "LABEL_0",
|
7 |
+
"1": "LABEL_1"
|
8 |
+
},
|
9 |
+
"label2id": {
|
10 |
+
"LABEL_0": 0,
|
11 |
+
"LABEL_1": 1
|
12 |
+
}
|
13 |
+
}
|
src/demo.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 1. 首先,你需要定义一个 ONNX 模型配置类,并注册它
|
2 |
+
from transformers import AutoConfig, PretrainedConfig, PreTrainedModel, AutoModel
|
3 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
4 |
+
|
5 |
+
class ONNXBaseConfig(PretrainedConfig):
|
6 |
+
model_type = "onnx-base"
|
7 |
+
|
8 |
+
# 注册配置类
|
9 |
+
AutoConfig.register("onnx-base", ONNXBaseConfig)
|
10 |
+
|
11 |
+
# 注册模型类
|
12 |
+
class ONNXBaseModel(AutoModel):
|
13 |
+
config_class = ONNXBaseConfig
|
14 |
+
|
15 |
+
class ONNXBaseModel(PreTrainedModel):
|
16 |
+
config_class = ONNXBaseConfig
|
17 |
+
|
18 |
+
def __init__(self, config):
|
19 |
+
super().__init__(config)
|
20 |
+
|
21 |
+
def forward(self, *args, **kwargs):
|
22 |
+
return self.dummy_param
|
23 |
+
|
24 |
+
|
25 |
+
AutoModel.register(ONNXBaseConfig, ONNXBaseModel)
|
26 |
+
|
27 |
+
from transformers.pipelines import Pipeline
|
28 |
+
|
29 |
+
class ONNXBasePipeline(Pipeline):
|
30 |
+
def __init__(self, model, **kwargs):
|
31 |
+
super().__init__(model=model, **kwargs)
|
32 |
+
|
33 |
+
def _sanitize_parameters(self, **kwargs):
|
34 |
+
return {}, {}, {}
|
35 |
+
|
36 |
+
def preprocess(self, inputs):
|
37 |
+
return inputs
|
38 |
+
|
39 |
+
def _forward(self, model_inputs):
|
40 |
+
return self.model(**model_inputs)
|
41 |
+
|
42 |
+
def postprocess(self, model_outputs):
|
43 |
+
return model_outputs
|
44 |
+
|
45 |
+
PIPELINE_REGISTRY.register_pipeline(
|
46 |
+
task="onnx-base",
|
47 |
+
pipeline_class=ONNXBasePipeline
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
from transformers import pipeline
|
52 |
+
|
53 |
+
# 使用自定义的 pipeline 任务
|
54 |
+
onnx_pipeline = pipeline(task="onnx-base", model="m3/onnx-base")
|
55 |
+
|
56 |
+
# 使用 pipeline
|
57 |
+
result = onnx_pipeline("Your input data here")
|
58 |
+
print(result)
|
src/init_model.py
CHANGED
@@ -6,7 +6,7 @@ import torch.onnx
|
|
6 |
class SimpleModel(nn.Module):
|
7 |
def __init__(self):
|
8 |
super(SimpleModel, self).__init__()
|
9 |
-
self.fc = nn.Linear(
|
10 |
|
11 |
def forward(self, x):
|
12 |
return self.fc(x)
|
|
|
6 |
class SimpleModel(nn.Module):
|
7 |
def __init__(self):
|
8 |
super(SimpleModel, self).__init__()
|
9 |
+
self.fc = nn.Linear(1, 1)
|
10 |
|
11 |
def forward(self, x):
|
12 |
return self.fc(x)
|