m3 commited on
Commit
70ebb68
·
1 Parent(s): a5e4e8f

chore: add empty sample

Browse files
Files changed (1) hide show
  1. src/empty.py +98 -0
src/empty.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, PreTrainedModel, AutoConfig, AutoModel
2
+ from transformers.pipelines import PIPELINE_REGISTRY
3
+ from huggingface_hub import hf_hub_download
4
+ import onnxruntime as ort
5
+
6
+ import torch
7
+ import os
8
+
9
+
10
+ # 1. register AutoConfig
11
+ class ONNXBaseConfig(PretrainedConfig):
12
+ model_type = 'onnx-base'
13
+
14
+
15
+ AutoConfig.register('onnx-base', ONNXBaseConfig)
16
+
17
+ # 2. register AutoModel
18
+ class ONNXBaseModel(PreTrainedModel):
19
+ config_class = ONNXBaseConfig
20
+
21
+ def __init__(self, config):
22
+ super().__init__(config)
23
+
24
+ def forward(self, input=None, **kwargs):
25
+ return {}
26
+
27
+ @classmethod
28
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
29
+ config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
30
+ return cls(config)
31
+
32
+ @property
33
+ def device(self):
34
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
35
+ return torch.device(device)
36
+
37
+
38
+ AutoModel.register(ONNXBaseConfig, ONNXBaseModel)
39
+
40
+ # 2. register Pipeline
41
+ from transformers.pipelines import Pipeline
42
+
43
+ class ONNXBasePipeline(Pipeline):
44
+ def __init__(self, model, **kwargs):
45
+ super().__init__(model=model, **kwargs)
46
+ self.device_id = kwargs['device']
47
+ model_path = hf_hub_download(repo_id='m3/onnx-base', filename='model.onnx', local_files_only=True)
48
+ self.session = ort.InferenceSession(model_path)
49
+
50
+ def __call__(
51
+ self,
52
+ inputs: str,
53
+ **kwargs,
54
+ ):
55
+ inputs = {"inputs": inputs}
56
+ return super().__call__(inputs, **kwargs)
57
+
58
+ def _sanitize_parameters(self, **kwargs):
59
+ return {}, {}, {}
60
+
61
+ def preprocess(self, input):
62
+ return {'input': input}
63
+
64
+ def _forward(self, model_input):
65
+ input = model_input['input']['inputs']
66
+ outs = self.session.run(None, {'input': input})
67
+ return input
68
+
69
+ def postprocess(self, model_outputs):
70
+ return model_outputs
71
+
72
+
73
+ PIPELINE_REGISTRY.register_pipeline(
74
+ task='onnx-base',
75
+ pipeline_class=ONNXBasePipeline,
76
+ pt_model=ONNXBaseModel,
77
+ default={"pt": ("m3/onnx-base", "a5e4e8f")},
78
+ )
79
+
80
+ # 4. show how to use
81
+ from transformers import pipeline
82
+
83
+ cfg = ONNXBaseConfig(model_path='model.onnx',
84
+ id2label={0: 'label_0', 1: 'label_1'},
85
+ label2id={0: 'label_1', 1: 'label_0'})
86
+
87
+ pipe = pipeline(
88
+ task='onnx-base',
89
+ batch_size=10,
90
+ device='cuda',
91
+ )
92
+
93
+ dummy_input = torch.tensor([[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]], dtype=torch.float32)
94
+ input_data = dummy_input.numpy()
95
+ result = pipe(
96
+ inputs=input_data, device='cuda',
97
+ )
98
+ print(result)