File size: 18,558 Bytes
332190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7587e
332190f
 
 
 
 
 
8a7587e
332190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import os
import argparse
from tqdm.auto import tqdm
from packaging import version

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torchvision import transforms
from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDPMScheduler,
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
    UniPCMultistepScheduler,
    PNDMScheduler,
    AmusedInpaintPipeline, AmusedScheduler, VQModel, UVit2DModel

)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils import load_image
from transformers import AutoTokenizer, CLIPFeatureExtractor, PretrainedConfig
from PIL import Image
from utils.mclip import *


def parse_args():
    parser = argparse.ArgumentParser(description="Edit images with M3Face.")
    parser.add_argument(
        "--prompt", 
        type=str, 
        default="This attractive woman has narrow eyes, rosy cheeks, and wears heavy makeup.",
        help="The input text prompt for image generation."
    )
    parser.add_argument(
        "--condition", 
        type=str, 
        default="mask", 
        choices=["mask", "landmark"],
        help="Use segmentation mask or facial landmarks for image generation."
    )
    parser.add_argument(
        "--image_path", 
        type=str, 
        default=None, 
        help="Path to the input image."
    )
    parser.add_argument(
        "--condition_path", 
        type=str, 
        default=None, 
        help="Path to the original mask/landmark image."
    )
    parser.add_argument(
        "--edit_condition_path", 
        type=str, 
        default=None, 
        help="Path to the target mask/landmark image."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default='output/',
        help="The output directory where the results will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible generation.")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument("--edit_condition", action="store_true")
    parser.add_argument("--load_unet_from_local", action="store_true")
    parser.add_argument("--save_unet", action="store_true")
    parser.add_argument("--unet_local_path", type=str, default=None)
    parser.add_argument("--load_finetune_from_local", action="store_true")
    parser.add_argument("--finetune_path", type=str, default=None)
    parser.add_argument("--use_english", action="store_true", help="Use the English models.")
    parser.add_argument("--embedding_optimize_it", type=int, default=500)
    parser.add_argument("--model_finetune_it", type=int, default=1000)
    parser.add_argument("--alpha", nargs="+", type=float, default=[0.8, 0.9, 1, 1.1])
    parser.add_argument("--num_inference_steps", nargs="+", type=int, default=[20, 40, 50])
    parser.add_argument("--unet_layer", type=str, default="2and3", 
                        help="Which UNet layers in the SD to finetune.")

    args = parser.parse_args()

    return args

def get_muse(args):
    muse_model_name = 'm3face/FaceConditioning'
    if args.condition == 'mask':
        muse_revision = 'segmentation'
    elif args.condition == 'landmark':
        muse_revision = 'landmark'
    scheduler = AmusedScheduler.from_pretrained(muse_model_name, revision=muse_revision, subfolder='scheduler')
    vqvae = VQModel.from_pretrained(muse_model_name, revision=muse_revision, subfolder='vqvae')
    uvit2 = UVit2DModel.from_pretrained(muse_model_name, revision=muse_revision, subfolder='transformer')
    text_encoder = MultilingualCLIP.from_pretrained(muse_model_name, revision=muse_revision, subfolder='text_encoder')
    tokenizer = AutoTokenizer.from_pretrained(muse_model_name, revision=muse_revision, subfolder='tokenizer')

    pipeline = AmusedInpaintPipeline(
        vqvae=vqvae,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        transformer=uvit2,
        scheduler=scheduler
    ).to("cuda")

    return pipeline

def import_model_class_from_model_name(sd_model_name):
    text_encoder_config = PretrainedConfig.from_pretrained(
        sd_model_name,
        subfolder="text_encoder",
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.deprecated.alt_diffusion import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")

def preprocess(image, condition, prompt, tokenizer):
    image_transforms = transforms.Compose(
        [
            transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(512),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )
    condition_transforms = transforms.Compose(
        [
            transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(512),
            transforms.ToTensor(),
        ]
    )
    image = image_transforms(image)
    condition = condition_transforms(condition)
    inputs = tokenizer(
            [prompt], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
        )

    return image, condition, inputs.input_ids, inputs.attention_mask

def main(args):
    if args.use_english:
        sd_model_name = 'runwayml/stable-diffusion-v1-5'
        controlnet_model_name = 'm3face/FaceControlNet'
        if args.condition == 'mask':
            controlnet_revision = 'segmentation-english'
        elif args.condition == 'landmark':
            controlnet_revision = 'landmark-english'
    else:
        sd_model_name = 'BAAI/AltDiffusion-m18'
        controlnet_model_name = 'm3face/FaceControlNet'
        if args.condition == 'mask':
            controlnet_revision = 'segmentation-mlin'
        elif args.condition == 'landmark':
            controlnet_revision = 'landmark-mlin'

    # ========== set up models ==========
    vae = AutoencoderKL.from_pretrained(sd_model_name, subfolder="vae")
    tokenizer = AutoTokenizer.from_pretrained(sd_model_name, subfolder="tokenizer", use_fast=False)
    text_encoder_cls = import_model_class_from_model_name(sd_model_name)
    text_encoder = text_encoder_cls.from_pretrained(sd_model_name, subfolder="text_encoder")
    noise_scheduler = DDPMScheduler.from_pretrained(sd_model_name, subfolder="scheduler")

    if args.load_unet_from_local:
        unet = UNet2DConditionModel.from_pretrained(args.unet_local_path)
    else:
        unet = UNet2DConditionModel.from_pretrained(sd_model_name, subfolder="unet")

    controlnet = ControlNetModel.from_pretrained(controlnet_model_name, revision=controlnet_revision)

    if args.edit_condition:
        muse = get_muse(args)

    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    controlnet.requires_grad_(False)
    unet.requires_grad_(False)
    vae.eval()
    text_encoder.eval()
    controlnet.eval()
    unet.eval()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                print(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
            controlnet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # ========== select params to optimize ==========
    params = []
    for name, param in unet.named_parameters():
        if(name.startswith('up_blocks')):
            params.append(param)

    if args.unet_layer == 'only1': # 116 layers
        params_to_optimize = [
            {'params': params[38:154]},
        ]
    elif args.unet_layer == 'only2': # 116 layers
        params_to_optimize = [
            {'params': params[154:270]},
        ]
    elif args.unet_layer == 'only3': # 114 layers
        params_to_optimize = [
            {'params': params[270:]},
        ]
    elif args.unet_layer == '1and2': # 232 layers
        params_to_optimize = [
            {'params': params[38:270]},
        ]
    elif args.unet_layer == '2and3': # 230 layers
        params_to_optimize = [
            {'params': params[154:]},
        ]
    elif args.unet_layer == 'all': # all layers
        params_to_optimize = [
            {'params': params},
        ]

    image = Image.open(args.image_path).convert('RGB')
    condition = Image.open(args.condition_path).convert('RGB')
    image, condition, input_ids, attention_mask = preprocess(image, condition, args.prompt, tokenizer)

    # Move to device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    vae.to(device, dtype=torch.float32)
    unet.to(device, dtype=torch.float32)
    text_encoder.to(device, dtype=torch.float32)
    controlnet.to(device)
    image = image.to(device).unsqueeze(0)
    condition = condition.to(device).unsqueeze(0)
    input_ids = input_ids.to(device)
    attention_mask = attention_mask.to(device)

    # ========== imagic ==========
    if args.load_finetune_from_local:
        print('Loading embeddings from local ...')
        orig_emb = torch.load(os.path.join(args.finetune_path, 'orig_emb.pt'))
        emb = torch.load(os.path.join(args.finetune_path, 'emb.pt'))
    else:
        init_latent = vae.encode(image.to(dtype=torch.float32)).latent_dist.sample()
        init_latent = init_latent * vae.config.scaling_factor

        if not args.use_english:
            orig_emb = text_encoder(input_ids, attention_mask=attention_mask)[0]
        else:
            orig_emb = text_encoder(input_ids)[0]
        emb = orig_emb.clone()
        torch.save(orig_emb, os.path.join(args.output_dir, 'orig_emb.pt'))
        torch.save(emb, os.path.join(args.output_dir, 'emb.pt'))

        # 1. Optimize the embedding
        print('1. Optimize the embedding')
        unet.eval()
        emb.requires_grad = True
        lr = 0.001
        it = args.embedding_optimize_it # 500
        opt = torch.optim.Adam([emb], lr=lr)
        history = []

        pbar = tqdm(
            range(it),
            initial=0,
            desc="Optimize Steps",
        )
        global_step = 0

        for i in pbar:
            opt.zero_grad()
            
            noise = torch.randn_like(init_latent)
            bsz = init_latent.shape[0]
            t_enc = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=init_latent.device)
            t_enc = t_enc.long()
            z = noise_scheduler.add_noise(init_latent, noise, t_enc)

            controlnet_image = condition.to(dtype=torch.float32)

            down_block_res_samples, mid_block_res_sample = controlnet(
                z,
                t_enc,
                encoder_hidden_states=emb,
                controlnet_cond=controlnet_image,
                return_dict=False,
            )

            # Predict the noise residual
            pred_noise = unet(
                z,
                t_enc,
                encoder_hidden_states=emb,
                down_block_additional_residuals=[
                    sample.to(dtype=torch.float32) for sample in down_block_res_samples
                ],
                mid_block_additional_residual=mid_block_res_sample.to(dtype=torch.float32),
            ).sample

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(init_latent, noise, t_enc)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
            loss = F.mse_loss(pred_noise.float(), target.float(), reduction="mean")
            
            loss.backward()
            global_step += 1
            pbar.set_postfix({"loss": loss.item()})
            history.append(loss.item())
            opt.step()
            opt.zero_grad()

        # 2. Finetune the model
        print('2. Finetune the model')
        emb.requires_grad = False
        unet.requires_grad_(True)
        unet.train()

        lr = 5e-5
        it = args.model_finetune_it # 1000
        opt = torch.optim.Adam(params_to_optimize, lr=lr)
        history = []

        pbar = tqdm(
            range(it),
            initial=0,
            desc="Finetune Steps",
        )
        global_step = 0
        for i in pbar:
            opt.zero_grad()
            
            noise = torch.randn_like(init_latent)
            bsz = init_latent.shape[0]
            t_enc = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=init_latent.device)
            t_enc = t_enc.long()
            z = noise_scheduler.add_noise(init_latent, noise, t_enc)

            controlnet_image = condition.to(dtype=torch.float32)

            down_block_res_samples, mid_block_res_sample = controlnet(
                z,
                t_enc,
                encoder_hidden_states=emb,
                controlnet_cond=controlnet_image,
                return_dict=False,
            )

            # Predict the noise residual
            pred_noise = unet(
                z,
                t_enc,
                encoder_hidden_states=emb,
                down_block_additional_residuals=[
                    sample.to(dtype=torch.float32) for sample in down_block_res_samples
                ],
                mid_block_additional_residual=mid_block_res_sample.to(dtype=torch.float32),
            ).sample

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(init_latent, noise, t_enc)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
            loss = F.mse_loss(pred_noise.float(), target.float(), reduction="mean")
            
            loss.backward()
            global_step += 1
            pbar.set_postfix({"loss": loss.item()})
            history.append(loss.item())
            opt.step()
            opt.zero_grad()

    # 3. Generate Images    
    print("3. Generating images... ")

    unet.eval()
    controlnet.eval()

    if args.edit_condition_path is None:
        edit_condition = load_image(args.condition_path)
    else:
        edit_condition = load_image(args.edit_condition_path)
    if args.edit_condition:
        edit_mask = Image.new("L", (256, 256), 0)
        for i in range(256):
            for j in range(256):
                if 40 < i < 220 and 20 < j < 256:
                    edit_mask.putpixel((i, j), 256)

        if args.condition == 'mask':
            condition = 'segmentation'
        elif args.condition == 'landmark':
            condition = 'landmark'
        edit_prompt = f"Generate face {condition} | " + args.prompt
        input_image = edit_condition.resize((256, 256)).convert("RGB")
        edit_condition = muse(edit_prompt, input_image, edit_mask, num_inference_steps=30).images[0].resize((512, 512))
        edit_condition.save(f'{args.output_dir}/edited_condition.png')
        
        # remove muse and empty cache
        del muse
        torch.cuda.empty_cache()

    if sd_model_name.startswith('BAAI'):
        scheduler = PNDMScheduler.from_pretrained(
            sd_model_name,
            subfolder='scheduler',
        )
        scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
        feature_extractor = CLIPFeatureExtractor.from_pretrained(
            sd_model_name,
            subfolder='feature_extractor',
        )
        pipeline = StableDiffusionControlNetPipeline(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=None,
            feature_extractor=feature_extractor
        )
    else:
        pipeline = StableDiffusionControlNetPipeline.from_pretrained(
            sd_model_name,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            safety_checker=None,
        )
        pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(device)
    pipeline.set_progress_bar_config(disable=True)

    if args.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()

    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=device).manual_seed(args.seed)
    
    with torch.autocast("cuda"):
        image = pipeline(
                image=edit_condition, prompt_embeds=emb, num_inference_steps=20, generator=generator
                ).images[0]
        image.save(f'{args.output_dir}/reconstruct.png')

    # Interpolate the embedding
    for num_inference_steps in args.num_inference_steps:
        for alpha in args.alpha:
            new_emb = alpha * orig_emb + (1 - alpha) * emb

            with torch.autocast("cuda"):
                image = pipeline(
                        image=edit_condition, prompt_embeds=new_emb, num_inference_steps=num_inference_steps, generator=generator
                    ).images[0]
                image.save(f'{args.output_dir}/image_{num_inference_steps}_{alpha}.png')

    if args.save_unet:
        print('Saving the unet model...')
        unet.save_pretrained(f'{args.output_dir}/unet')


if __name__ == '__main__':
    args = parse_args()
    main(args)