File size: 1,827 Bytes
332190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author     :   Qingping Zheng
@Contact    :   [email protected]
@File       :   util.py
@Time       :   10/01/21 00:00 PM
@Desc       :   
@License    :   Licensed under the Apache License, Version 2.0 (the "License"); 
@Copyright  :   Copyright 2022 The Authors. All Rights Reserved.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch.nn as nn

from inplace_abn import InPlaceABNSync


class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, abn=InPlaceABNSync, dilation=1, downsample=None, fist_dilation=1, multi_grid=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = abn(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=dilation*multi_grid, dilation=dilation*multi_grid, bias=False)
        self.bn2 = abn(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = abn(planes * 4)
        self.relu = nn.ReLU(inplace=False)
        self.relu_inplace = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.dilation = dilation
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out = out + residual      
        out = self.relu_inplace(out)

        return out