M3Face / utils /plot_mask.py
m3face's picture
Adding files
332190f
import os
import cv2
import gdown
import shutil
import argparse
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torchvision.utils import save_image
from inplace_abn import InPlaceABN
from dml_csr import dml_csr
from dml_csr import transforms as dml_transforms
def parse_args():
parser = argparse.ArgumentParser(description="Plot segmentation mask of an image.")
parser.add_argument(
"--image_path",
type=str,
default=None,
help="Path to the image file."
)
parser.add_argument("--size", type=int, default=512)
parser.add_argument(
"--checkpoint_path",
type=str,
default='ckpt/DML_CSR/dml_csr_celebA.pth',
help="Path to the DML-CSR pretrained model."
)
parser.add_argument(
"--output_dir",
type=str,
default="output/masks/",
help="Folder to save segmentation mask."
)
args = parser.parse_args()
return args
def download_checkpoint():
os.makedirs('ckpt', exist_ok=True)
id = "1xttWuAj633-ujp_vcm5DtL98PP0b-sUm"
gdown.download(id=id, output='ckpt/DML_CSR.zip')
shutil.unpack_archive('ckpt/DML_CSR.zip', 'ckpt')
os.remove('ckpt/DML_CSR.zip')
def box2cs(box: list) -> tuple:
x, y, w, h = box[:4]
return xywh2cs(x, y, w, h)
def xywh2cs(x: float, y: float, w: float, h: float) -> tuple:
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > h:
h = w
elif w < h:
w = h
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
return center, scale
def labelcolormap(N):
if N == 19: # CelebAMask-HQ
cmap = np.array([(0, 0, 0), (204, 0, 0), (76, 153, 0),
(204, 204, 0), (204, 0, 204), (204, 0, 204), (255, 204, 204),
(255, 204, 204), (102, 51, 0), (102, 51, 0), (102, 204, 0),
(255, 255, 0), (0, 0, 153), (0, 0, 204), (255, 51, 153),
(0, 204, 204), (0, 51, 0), (255, 153, 51), (0, 204, 0)],
dtype=np.uint8)
else:
def uint82bin(n, count=8):
"""returns the binary of integer n, count refers to amount of bits"""
return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)])
cmap = np.zeros((N, 3), dtype=np.uint8)
for i in range(N):
r, g, b = 0, 0, 0
id = i
for j in range(7):
str_id = uint82bin(id)
r = r ^ (np.uint8(str_id[-1]) << (7-j))
g = g ^ (np.uint8(str_id[-2]) << (7-j))
b = b ^ (np.uint8(str_id[-3]) << (7-j))
id = id >> 3
cmap[i, 0] = r
cmap[i, 1] = g
cmap[i, 2] = b
return cmap
class Colorize(object):
def __init__(self, n=19):
self.cmap = labelcolormap(n)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, gray_image):
size = gray_image.size()
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
for label in range(0, len(self.cmap)):
mask = (label == gray_image[0]).cpu()
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
return color_image
def tensor2label(label_tensor, n_label):
label_tensor = label_tensor.cpu().float()
if label_tensor.size()[0] > 1:
label_tensor = label_tensor.max(0, keepdim=True)[1]
label_tensor = Colorize(n_label)(label_tensor)
#label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
label_numpy = label_tensor.numpy()
label_numpy = label_numpy / 255.0
return label_numpy
def generate_label(inputs, imsize):
pred_batch = []
for input in inputs:
input = input.view(1, 19, imsize, imsize)
pred = np.squeeze(input.data.max(1)[1].cpu().numpy(), axis=0)
pred_batch.append(pred)
pred_batch = np.array(pred_batch)
pred_batch = torch.from_numpy(pred_batch)
label_batch = []
for p in pred_batch:
p = p.view(1, imsize, imsize)
label_batch.append(tensor2label(p, 19))
label_batch = np.array(label_batch)
label_batch = torch.from_numpy(label_batch)
return label_batch
def get_mask(model, image, input_size):
interp = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
image = image.unsqueeze(0)
with torch.no_grad():
outputs = model(image.cuda())
labels = generate_label(interp(outputs), input_size[0])
return labels[0]
def save_mask(args):
os.makedirs(args.output_dir, exist_ok=True)
cudnn.benchmark = True
cudnn.enabled = True
model = dml_csr.DML_CSR(19, InPlaceABN, False)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([transforms.ToTensor(), normalize])
input_size = (args.size, args.size)
image = cv2.imread(args.image_path, cv2.IMREAD_COLOR)
h, w, _ = image.shape
center, s = box2cs([0, 0, w - 1, h - 1])
r = 0
crop_size = np.asarray(input_size)
trans = dml_transforms.get_affine_transform(center, s, r, crop_size)
image = cv2.warpAffine(image, trans, (int(crop_size[1]), int(crop_size[0])),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0, 0, 0))
image = transform(image)
if not os.path.exists(args.checkpoint_path):
download_checkpoint()
state_dict = torch.load(args.checkpoint_path, map_location='cuda:0')
model.load_state_dict(state_dict)
model.cuda()
model.eval()
mask = get_mask(model, image, input_size)
filename = os.path.join(args.output_dir, os.path.basename(args.image_path).split('.')[0] + '.png')
save_image(mask, filename)
print(f'Mask saved in {filename}')
if __name__ == '__main__':
args = parse_args()
save_mask(args)