#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @Author : Qingping Zheng @Contact : qingpingzheng2014@gmail.com @File : dml_csr.py @Time : 10/01/21 00:00 PM @Desc : @License : Licensed under the Apache License, Version 2.0 (the "License"); @Copyright : Copyright 2015 The Authors. All Rights Reserved. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch.nn as nn from torch.nn import functional as F from inplace_abn import InPlaceABNSync from .modules.ddgcn import DDualGCNHead from .modules.parsing import Parsing from .modules.edges import Edges from .modules.util import Bottleneck def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class DML_CSR(nn.Module): def __init__(self, num_classes, abn=InPlaceABNSync, trained=True): super().__init__() self.inplanes = 128 self.is_trained = trained self.conv1 = conv3x3(3, 64, stride=2) self.bn1 = abn(64) self.relu1 = nn.ReLU(inplace=False) self.conv2 = conv3x3(64, 64) self.bn2 = abn(64) self.relu2 = nn.ReLU(inplace=False) self.conv3 = conv3x3(64, 128) self.bn3 = abn(128) self.relu3 = nn.ReLU(inplace=False) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layers = [3, 4, 23, 3] self.abn = abn strides = [1, 2, 1, 1] dilations = [1, 1, 1, 2] self.layer1 = self._make_layer(Bottleneck, 64, self.layers[0], stride=strides[0], dilation=dilations[0]) self.layer2 = self._make_layer(Bottleneck, 128, self.layers[1], stride=strides[1], dilation=dilations[1]) self.layer3 = self._make_layer(Bottleneck, 256, self.layers[2], stride=strides[2], dilation=dilations[2]) self.layer4 = self._make_layer(Bottleneck, 512, self.layers[3], stride=strides[3], dilation=dilations[3], multi_grid=(1,1,1)) # Context Aware self.context = DDualGCNHead(2048, 512, abn) self.layer6 = Parsing(512, 256, num_classes, abn) # edge if self.is_trained: self.edge_layer = Edges(abn, out_fea=num_classes) def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), self.abn(planes * block.expansion, affine=True)) layers = [] generate_multi_grid = lambda index, grids: grids[index%len(grids)] if isinstance(grids, tuple) else 1 layers.append(block(self.inplanes, planes, stride, abn=self.abn, dilation=dilation, downsample=downsample, multi_grid=generate_multi_grid(0, multi_grid))) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, abn=self.abn, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid))) return nn.Sequential(*layers) def forward(self, x): input = x x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x1 = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x1) x2 = self.layer1(x) # 119 x 119 x3 = self.layer2(x2) # 60 x 60 x4 = self.layer3(x3) # 60 x 60 x5 = self.layer4(x4) # 60 x 60 x = self.context(x5) seg, x = self.layer6(x, x2) if self.is_trained: binary_edge, semantic_edge, edge_fea = self.edge_layer(x2,x3,x4) return seg, binary_edge, semantic_edge return seg