File size: 8,732 Bytes
fc7239c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from einops import rearrange, repeat
import torch
from torchvision import transforms
from PIL import Image, ImageFile
import random
from torchvision.ops.boxes import box_area
from torchvision.transforms.transforms import InterpolationMode
from torchvision.transforms import functional as F
import numpy as np
from icecream import ic
import re
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
from .constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
def box_iou(boxes1, area1, boxes2, eps=1e-5):
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / (union+eps)
return iou, union
def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
# anchors x1 y1 x2 y2
# image_size: (h, w)
# xyxy
input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)
boxes1 = anchors
boxes2 = input_image_bbox
boxes3 = anchors.clone()
# y2
boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
area1 = anchors_areas
iou, _ = box_iou(boxes1, area1, boxes2)
iou = iou.squeeze(1)
shape_iou, _ = box_iou(boxes1, area1, boxes3)
shape_iou = shape_iou.diag()
# 优先匹配形状接近 再匹配分辨率接近
index = torch.argmax(shape_iou*100+iou,dim=0)
return index
class AnchorResize(torch.nn.Module):
def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None):
super().__init__()
# xyxy
self.anchors = torch.tensor(
[[0, 0, _[1]*image_size[1], _[0]*image_size[0]]
for _ in anchors], requires_grad=False
)
self.anchor_areas = box_area(self.anchors)
self.interpolation = interpolation
self.antialias = antialias
def forward(self, img, skip_resize=False):
"""
Args:
img (PIL Image or Tensor): Image to be scaled.
Returns:
PIL Image or Tensor: Rescaled image.
"""
selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
target_size = self.anchors[selected_anchor][2:].tolist() # w,h
if skip_resize:
# for debug
return selected_anchor
return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor
def __repr__(self) -> str:
detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
return f"{self.__class__.__name__}{detail}"
class DocProcessor():
def __init__(self, tokenizer=None, image_size=504, anchors='grid_12'):
self.media_token= "<|image|>"
# h,w
if isinstance(image_size, int):
image_size = (image_size, image_size)
self.image_size = image_size
# h,w
# anchors = grid_dict[anchors]
max_crop = int(anchors.split('_')[1])
anchors = [(j, int(i/j)) for i in range(1,max_crop+1) for j in range(1, i+1) if i%j==0]
self.anchors = [tuple(_) for _ in anchors]
self.anchor_max = max([max(_) for _ in self.anchors])
# xywh -> xyxy
self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC)
self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
self.image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
self.tokenizer = tokenizer
def _process_image(self, images):
new_images = []
new_patch_position = []
num_image_mult = []
for image in images:
nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0)
image, selected_anchor = self.resizer(image)
image_input = self.image_transform(image) # h,w,3 -> 3,h,w
# rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1])
image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])
image_input = torch.cat([nocut_image, image_input], dim=0)
anchor = self.anchors[selected_anchor] # w,h
patch_position = torch.cat([
repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]),
repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2)
patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw)
patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0)
new_images.append(image_input)
new_patch_position.append(patch_position)
num_image_mult.append(patch_position.shape[0])
new_images = torch.cat(new_images,dim=0)
new_patch_position = torch.cat(new_patch_position, dim=0)
return new_images, new_patch_position, num_image_mult
def __call__(self, images=None, messages=None):
assert images is not None
# print(images)
## 1. process images
if not isinstance(images, list):
images = [images]
image_pils = []
for image in images:
if isinstance(image, str):
image = Image.open(image).convert('RGB')
else:
image = image.convert('RGB')
# ic(image.size)
image_pils.append(image)
image_data, patch_position, num_image_mult = self._process_image(image_pils)
## 2. process text
# 2.1 add image ordinal token (e.g. <img 1>) before image placeholder <|image|>
image_index = 1 # start from 1
for m in messages:
try:
assert m['role'] in ['USER', 'ASSISTANT']
except Exception as e:
print("Unexpected role: "+m['role']+", only support 'USER' or 'ASSISTANT'")
exit(0)
if m['role'] == 'USER' and self.media_token in m.get('content', ''):
pattern = '|'.join(map(re.escape, [self.media_token]))
text_list = re.split(f'({pattern})', m['content'])
text = ''
for x in text_list:
if x == '<|image|>':
text += '<img '+str(image_index)+'><|image|>'
image_index += 1
else:
text += x
m['content'] = text
if messages[-1]['role'] == 'USER':
messages.append({'role':'ASSISTANT'})
else:
try:
assert messages[-1].get('content', '') == ''
except Exception as e:
print("Unexpected end message: "+str(messages[-1]), "only (role=='USER') or (role=='ASSISTANT' and content=='') are expected.")
exit(0)
# print('after adding img ordinal token: ', messages)
# 2.2 text tokenize
seps = [' ', '</s>']
prompt = ""
for i, m in enumerate(messages):
if 'content' in m:
prompt += m['role'] + ": " + m['content'] + seps[i % 2]
else:
prompt += m['role'] + ":"
ic(prompt)
assert self.media_token in prompt
input_ids = self.tokenizer_token(prompt)
return image_data, patch_position, input_ids
def tokenizer_token(self, prompt):
prompt_chunks = [self.tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == self.tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [IMAGE_TOKEN_INDEX] * (offset + 1)):
input_ids.extend(x[offset:])
return torch.tensor(input_ids, dtype=torch.long)
|