File size: 8,732 Bytes
fc7239c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from einops import rearrange, repeat
import torch
from torchvision import transforms
from PIL import Image, ImageFile
import random
from torchvision.ops.boxes import box_area

from torchvision.transforms.transforms import InterpolationMode
from torchvision.transforms import functional as F
import numpy as np
from icecream import ic
import re

ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None

from .constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN

def box_iou(boxes1, area1, boxes2, eps=1e-5):
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / (union+eps)
    return iou, union

def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
    # anchors x1 y1 x2 y2

    # image_size: (h, w)
    # xyxy
    input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)

    boxes1 = anchors
    boxes2 = input_image_bbox
    boxes3 = anchors.clone()
    # y2
    boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
    
    area1 = anchors_areas
    
    iou, _ = box_iou(boxes1, area1, boxes2)
    iou = iou.squeeze(1)
    shape_iou, _ = box_iou(boxes1, area1, boxes3)
    shape_iou = shape_iou.diag()
    # 优先匹配形状接近 再匹配分辨率接近
    index = torch.argmax(shape_iou*100+iou,dim=0)
    return index

class AnchorResize(torch.nn.Module):

    def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None):
        super().__init__()
        # xyxy
        self.anchors = torch.tensor(
            [[0, 0, _[1]*image_size[1], _[0]*image_size[0]] 
            for _ in anchors], requires_grad=False
        )
        
        self.anchor_areas = box_area(self.anchors)

        self.interpolation = interpolation
        self.antialias = antialias

    def forward(self, img, skip_resize=False):
        """
        Args:
            img (PIL Image or Tensor): Image to be scaled.

        Returns:
            PIL Image or Tensor: Rescaled image.
        """
        selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
        target_size = self.anchors[selected_anchor][2:].tolist() # w,h
        if skip_resize:
            # for debug
            return selected_anchor
        return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor

    def __repr__(self) -> str:
        detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
        return f"{self.__class__.__name__}{detail}"


class DocProcessor():
    def __init__(self, tokenizer=None, image_size=504, anchors='grid_12'):
        self.media_token= "<|image|>"
        # h,w
        if isinstance(image_size, int):
            image_size = (image_size, image_size)
        self.image_size = image_size
        # h,w
        # anchors = grid_dict[anchors]
        max_crop = int(anchors.split('_')[1])
        anchors = [(j, int(i/j)) for i in range(1,max_crop+1) for j in range(1, i+1) if i%j==0]
        self.anchors = [tuple(_) for _ in anchors]
        self.anchor_max = max([max(_) for _ in self.anchors])
        # xywh -> xyxy
        self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC)
        self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
        self.image_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
        ])
        self.tokenizer = tokenizer
    
    def _process_image(self, images):
        new_images = []
        new_patch_position = []
        num_image_mult = []
        for image in images:
            nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0)
                
            image, selected_anchor = self.resizer(image)
            image_input = self.image_transform(image) # h,w,3 -> 3,h,w
            # rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1])
            image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])

            image_input = torch.cat([nocut_image, image_input], dim=0)

            anchor = self.anchors[selected_anchor] # w,h
            patch_position = torch.cat([
                repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]),
                repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2)
            patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw)

            patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0)

            new_images.append(image_input)
            new_patch_position.append(patch_position)
            num_image_mult.append(patch_position.shape[0])

        new_images = torch.cat(new_images,dim=0)
        new_patch_position = torch.cat(new_patch_position, dim=0)
        return new_images, new_patch_position, num_image_mult

    def __call__(self, images=None, messages=None):
        assert images is not None
        # print(images)

        ## 1. process images
        if not isinstance(images, list):
            images = [images]
        image_pils = []
        for image in images:
            if isinstance(image, str):
                image = Image.open(image).convert('RGB')
            else:

                image = image.convert('RGB')
            # ic(image.size)
            image_pils.append(image)

        image_data, patch_position, num_image_mult = self._process_image(image_pils)

        ## 2. process text
        # 2.1 add image ordinal token (e.g. <img 1>) before image placeholder <|image|>
        image_index = 1 # start from 1
        for m in messages:
            try:
                assert m['role'] in ['USER', 'ASSISTANT']
            except Exception as e:
                print("Unexpected role: "+m['role']+", only support 'USER' or 'ASSISTANT'")
                exit(0)

            if m['role'] == 'USER' and self.media_token in m.get('content', ''):
                pattern = '|'.join(map(re.escape, [self.media_token]))
                text_list = re.split(f'({pattern})', m['content'])
                text = ''
                for x in text_list:
                    if x == '<|image|>':
                        text += '<img '+str(image_index)+'><|image|>'
                        image_index += 1
                    else:
                        text += x
                m['content'] = text
        
        if messages[-1]['role'] == 'USER':
            messages.append({'role':'ASSISTANT'})
        else:
            try:
                assert messages[-1].get('content', '') == ''
            except Exception as e:
                print("Unexpected end message: "+str(messages[-1]), "only (role=='USER') or (role=='ASSISTANT' and content=='') are expected.")
                exit(0)

        # print('after adding img ordinal token: ', messages)
        # 2.2 text tokenize
        seps = [' ', '</s>']
        prompt = ""
        for i, m in enumerate(messages):
            if 'content' in m:
                prompt += m['role'] + ": " + m['content'] + seps[i % 2]
            else:
                prompt += m['role'] + ":"
        ic(prompt)
        assert self.media_token in prompt
        input_ids = self.tokenizer_token(prompt)

        return image_data, patch_position, input_ids
    

    def tokenizer_token(self, prompt):
        prompt_chunks = [self.tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]

        def insert_separator(X, sep):
            return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

        input_ids = []
        offset = 0
        if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == self.tokenizer.bos_token_id:
            offset = 1
            input_ids.append(prompt_chunks[0][0])

        for x in insert_separator(prompt_chunks, [IMAGE_TOKEN_INDEX] * (offset + 1)):
            input_ids.extend(x[offset:])

        return torch.tensor(input_ids, dtype=torch.long)