File size: 20,448 Bytes
fc7239c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import math
from typing import Any, Optional, Tuple, Union
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint
from icecream import ic
from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
from einops import rearrange
class MplugDocOwlVisualMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
in_features = config.high_reso_cross_hid_size
self.act = nn.SiLU()
ffn_hidden_size = int(2 * 4 * in_features / 3)
multiple_of = 256
ffn_hidden_size = multiple_of * ((ffn_hidden_size + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(in_features, ffn_hidden_size)
self.w2 = nn.Linear(ffn_hidden_size, in_features)
self.w3 = nn.Linear(in_features, ffn_hidden_size)
self.ffn_ln = nn.LayerNorm(ffn_hidden_size, eps=config.layer_norm_eps)
torch.nn.init.zeros_(self.w1.bias.data)
torch.nn.init.zeros_(self.w2.bias.data)
torch.nn.init.zeros_(self.w3.bias.data)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states)
hidden_states = self.ffn_ln(hidden_states)
hidden_states = self.w2(hidden_states)
return hidden_states
class FlashCrossAttention(torch.nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
device=None, dtype=None):
super().__init__()
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(self, q, k, v, **kwargs):
"""Implements the multihead softmax attention.
Arguments
---------
q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
or
q: (Sum_q, H, D), k,v : (Sum_k, H, D),
must with batch_size, max_seqlen_q, max_seqlen_k, cu_seqlens_q, cu_seqlens_k in kwargs
"""
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
assert all((i.is_cuda for i in (q,k,v)))
if q.dim() == 4:
batch_size, seqlen_q = q.shape[0], q.shape[1]
q = rearrange(q, 'b s ... -> (b s) ...')
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
device=q.device)
else:
batch_size, seqlen_q = kwargs['batch_size'], kwargs['max_seqlen_q']
cu_seqlens_q = kwargs['cu_seqlens_q']
if k.dim() == 4:
seqlen_k = k.shape[1]
k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [k, v]]
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
device=q.device)
else:
seqlen_k = kwargs['max_seqlen_k']
cu_seqlens_k = kwargs['cu_seqlens_k']
# q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
# self.dropout_p = 0
"""print('FlashCrossAttention: q.shape:', q.shape)
print('FlashCrossAttention: k.shape:', k.shape)
print('FlashCrossAttention: v.shape:', v.shape)
print('FlashCrossAttention: cu_seqlens_q:', cu_seqlens_q)
print('FlashCrossAttention: cu_seqlens_k:', cu_seqlens_k)"""
# print('visual_compressor.py q.shape:', q.shape, ' k.shape:', k.shape, ' v.shape:', v.shape)
output = flash_attn_unpadded_func(
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=False
)
if q.dim() == 4: # keep the shape of output shape same as the input query
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
return output
class MplugDocOwlVisualMultiHeadAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.high_reso_cross_hid_size % config.high_reso_cross_num_att_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
% (config.high_reso_cross_hid_size, config.high_reso_cross_num_att_heads)
)
if config.high_reso_cross_hid_size // config.high_reso_cross_num_att_heads > 256:
raise ValueError(
"The hidden size of each head (%d) > 256 and is illegal for flash attention"
% (config.high_reso_cross_hid_size // config.high_reso_cross_num_att_heads)
)
self.num_attention_heads = config.high_reso_cross_num_att_heads
self.attention_head_size = int(config.high_reso_cross_hid_size / config.high_reso_cross_num_att_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
self.key = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
self.value = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
self.core_attention_flash = FlashCrossAttention(attention_dropout=config.high_reso_cross_dropout)
# bias init
torch.nn.init.zeros_(self.query.bias.data)
torch.nn.init.zeros_(self.key.bias.data)
torch.nn.init.zeros_(self.value.bias.data)
def transpose_for_scores(self, x):
# [B, S, D] -> [B, S, H, D] or [Sum_S, D] -> [Sum_S, H, D]
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x
def forward(
self,
hidden_states,
encoder_hidden_states=None,
**kwargs
):
# assert not torch.isnan(hidden_states).any()
# assert not torch.isnan(encoder_hidden_states).any()
key = self.transpose_for_scores(self.key(encoder_hidden_states))
value = self.transpose_for_scores(self.value(encoder_hidden_states))
query = self.transpose_for_scores(self.query(hidden_states))
# print('visual_compressor.py key(after projection): ', key.shape, key)
# print('visual_compressor.py value(after projection): ', value.shape, value)
# print('visual_compressor.py query(after projection): ', query.shape, query)
# assert not torch.isnan(key).any()
# assert not torch.isnan(value).any()
# assert not torch.isnan(query).any()
outputs = self.core_attention_flash(q=query, k=key, v=value, **kwargs)
outputs = rearrange(outputs, 's h d -> s (h d)').contiguous()
# print('visual_compressor.py outputs(after cross_att): ', outputs.shape, outputs)
return outputs
class MplugDocOwlVisualCrossOutput(nn.Module):
def __init__(self, config):
super().__init__()
dim = config.high_reso_cross_hid_size
self.out_proj = nn.Linear(dim, dim, bias=True)
self.norm2 = nn.LayerNorm(dim)
self.mlp = MplugDocOwlVisualMLP(config)
# bias init
torch.nn.init.zeros_(self.out_proj.bias.data)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
input_tensor = input_tensor + self.out_proj(hidden_states)
input_tensor = input_tensor + self.mlp(self.norm2(input_tensor))
return input_tensor
class MplugDocOwlVisualCrossAttentionLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = MplugDocOwlVisualMultiHeadAttention(config)
self.output = MplugDocOwlVisualCrossOutput(config)
self.norm1 = nn.LayerNorm(config.high_reso_cross_hid_size)
self.normk = nn.LayerNorm(config.high_reso_cross_hid_size)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
**kwargs
) -> Tuple[torch.Tensor]:
# print('visual_compressor.py hidden_states: ', hidden_states.shape, hidden_states)
# print('visual_compressor.py encoder_hidden_states: ', encoder_hidden_states.shape, encoder_hidden_states)
# assert not torch.isnan(hidden_states).any()
# assert not torch.isnan(encoder_hidden_states).any()
hidden_states = self.norm1(hidden_states)
encoder_hidden_states = self.normk(encoder_hidden_states)
# print('visual_compressor.py hidden_states(after norm): ', hidden_states.shape, hidden_states)
# print('visual_compressor.py encoder_hidden_states(after norm): ', encoder_hidden_states.shape, encoder_hidden_states)
attention_output = self.attention(
hidden_states,
encoder_hidden_states,
**kwargs
)
outputs = self.output(attention_output, hidden_states)
return outputs
class MplugDocOwlVisualCrossAttentionEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer_num = config.layer
self.layers = nn.ModuleList(
[MplugDocOwlVisualCrossAttentionLayer(config) for layer_idx in range(self.layer_num)]
)
self.gradient_checkpointing = True
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
**kwargs
):
for i in range(self.layer_num):
layer_module = self.layers[i]
layer_outputs = layer_module(
hidden_states,
encoder_hidden_states,
**kwargs
)
hidden_states = layer_outputs
return hidden_states
def ensemble_crop_feats(crop_feats, patch_positions, col_feat_num):
"""
ensemble vision feats from different crops to a feature map according the position of the raw image
crop_feats: [N_crop, Len_feat, D]
patch_positions: [N_crop, 2], 2 == (rowl_index, col_index)
col_feat_num: the feature num of a row in a crop image
"""
assert crop_feats.size(0) == patch_positions.size(0)
row_feats = []
crop_row = torch.max(patch_positions[:,0])+1 #
crop_feats = rearrange(crop_feats, '(R C) L D -> R C L D', R=crop_row) # [N_crop_row, N_crop_col, Len_feat, D]
crop_feats = rearrange(crop_feats, 'R C (X Y) D-> R C X Y D', Y=col_feat_num) # [N_crop_row, N_crop_col, Len_row_feat, Len_col_feat, D]
# 1. concatenate same row feats across crops; 2. ensemble row feats to get 1 feature map
hw_feats = rearrange(crop_feats, 'R C X Y D-> (R X) (C Y) D') # [N_crop_row x Len_row_feat, N_crop_col x Len_col_feat, D]
return hw_feats
def group_window_feats(feats, window):
"""
collect vision feats from a window (win_row, win_col) to 1 group
feats: [H, W, D]
window: (win_row, win_col)
return: [H/win_row, H/win_col, win_row x win_col, D]
"""
group_feats = rearrange(feats, '(X R) (Y C) D -> (X Y) (R C) D', R=window[0], C=window[1]) # [H/win_row x H/win_col, win_row x win_col, D]
return group_feats
def distinguish_global_crop_features(hidden_states, patch_positions, reorganize_crop_feats=True, col_feat_num=None, group_feats_by_crop_shape=False, keep_row_col=False):
"""
distinguish global and crop features with the help of patcg_positions
# hidden_states: [B, s+1, h]
# (B is the sum of cropped num across samples in a micro_batch, s is the visual tokens, +1 means the vit end token)
# patch_positions: [B, 2],
# 2 == (rowl_index, col_index), the first crop is (0,0), global img is (anchor_max, anchor_max)
col_feat_num is used when reorganize_crop_feats == True
outputs:
img_global_features: list of [Len_global_feat, D]
img_crop_features: list of [Len_global_feat, D]
"""
hidden_states = hidden_states[:, :-1, :] # remove the last vit end token emb
# the first crop is (0,0)
first_crop_indices = (patch_positions.sum(dim=-1) == 0).nonzero().squeeze(1) # Num_img
# the global image is before the first crop
global_indices = first_crop_indices - 1 # Num_img
# print('vision2text_model.py patch_positions:', patch_positions)
# print('vision2text_model.py global_indices:', global_indices)
# collect cropped vision features of an identical image
batch_size = hidden_states.size(0)
img_global_features = []
img_crop_features = [] # store list of Num_crop (variable) x Len_feat (fixed)
img_crop_positions = [] # store list of Num_crop (variable) x 2
for i in range(len(global_indices)):
index = global_indices[i]
img_global_features.append(hidden_states[index])
if i == (len(global_indices)-1):
img_crop_features.append(hidden_states[index+1:])
img_crop_positions.append(patch_positions[index+1:])
else:
next_index = global_indices[i+1]
img_crop_features.append(hidden_states[index+1:next_index])
img_crop_positions.append(patch_positions[index+1:next_index])
if reorganize_crop_feats:
for i in range(len(img_crop_features)):
img_crop_features[i] = ensemble_crop_feats(img_crop_features[i], img_crop_positions[i], col_feat_num) # [H W D]
if group_feats_by_crop_shape: # collect vision feats from a window (crop_row, crop_col) to 1 group
crop_row = torch.max(img_crop_positions[i][:,0])+1 #
crop_col = torch.max(img_crop_positions[i][:,1])+1 #
img_crop_features[i] = group_window_feats(img_crop_features[i], window=(crop_row, crop_col)) # [H/crop_row x W/crop_col, crop_row x crop_row, D]
else:
# img_crop_features = [rearrange(x, 'H W D -> (H W) D') for x in img_crop_features]
if not keep_row_col:
img_crop_featuress[i] = rearrange(img_crop_featuress[i], 'H W D -> (H W) D')
else:
img_crop_features = [rearrange(x, 'N L D -> (N L) D') for x in img_crop_features]
return img_global_features, img_crop_features
class MplugDocOwlHRDocCompressor(PreTrainedModel):
"""
After vision-to-text module, use low-resolution global features to select high-resolution crop features with cross-attention
the key/value from high-resolution crop features are contrained in a window size
positions of the features within the window in raw images are the same as the global query features
"""
def __init__(self, config, output_hidden_size, v2t_img_col_tokens):
super().__init__(config)
self.use_flash_attn = True
assert self.use_flash_attn
self.v2t_img_col_tokens = v2t_img_col_tokens
self.compressor_crossatt = MplugDocOwlVisualCrossAttentionEncoder(config)
self.compressor_fc = torch.nn.Linear(output_hidden_size, output_hidden_size)
self.compressor_eos = torch.nn.Parameter(torch.randn(1, 1, output_hidden_size))
def forward(self, hidden_states, patch_positions=None):
# hidden_states: outputs of vision2textmodel: [Sum(crop), s+1, h]
# (Sum(crop) is the sum of cropped num across samples in a micro_batch, s is the visual tokens, +1 is the special vit_eos token added in H-Reducer)
# patch_positions: [Sum(crop), 2]
# print('visual_compressor.py HRDocCompressor hidden_states.shape:', hidden_states.shape)
# print('visual_compressor.py HRDocCompressor patch_positions.shape:', patch_positions.shape)
# N_img x [L_global (fixed), D], N_img x [L_global (fixed), Crop_row x Crop_Col (Variable), D]
img_global_features, img_crop_features = distinguish_global_crop_features(hidden_states,
patch_positions,
reorganize_crop_feats=True,
col_feat_num=self.v2t_img_col_tokens,
group_feats_by_crop_shape=True)
# cross-attention to accumulate high-resolution features
# if self.use_flash_attn: # flash_attn_varlen_func don't need to pad crop_features
img_global_features = torch.stack(img_global_features, dim=0).to(hidden_states.device) # Num_img x Len_global_feat x D
batch_size, global_feat_num, seqlen_q = img_global_features.shape[0], img_global_features.shape[1], 1
img_global_features = rearrange(img_global_features, 'b s ... -> (b s) ...')
cu_seqlens_q = torch.arange(0, batch_size*global_feat_num+1, step=1, dtype=torch.int32, device=img_global_features.device) # # (Num_img x Len_global_feat +1, )
cu_seqlens_k = [0]
max_seqlens_k = 0
for crop_feat in img_crop_features:
for i in range(crop_feat.shape[0]):
cu_seqlens_k.append(cu_seqlens_k[-1]+crop_feat.shape[1]) # same k within a image shares the seq len
max_seqlens_k = max(max_seqlens_k, crop_feat.size(1))
cu_seqlens_k = torch.tensor(cu_seqlens_k, dtype=torch.int32).to(hidden_states.device) # (Num_img x Len_global_feat+1, )
# cu_seqlens_k = torch.arange(0, (batch_size + 1) * max_seqlens_k, step=max_seqlens_k, dtype=torch.int32, device=img_global_features.device) # # (Num_img+1, )
img_crop_features = torch.cat([rearrange(x, 'N L D -> (N L) D') for x in img_crop_features], dim=0).to(hidden_states.device) # Sum(L_hr) x D
flash_kwargs = {
'batch_size': batch_size*global_feat_num, # each feat in global feats use different keys
'max_seqlen_q': seqlen_q, # key are unique for each query
'max_seqlen_k': max_seqlens_k,
'cu_seqlens_q': cu_seqlens_q, # the seq len of each q
'cu_seqlens_k': cu_seqlens_k # the seq len of each k
}
# print('visual_compressor.py HRDocCompressor img_global_features.shape:', img_global_features.shape, img_global_features)
# print('visual_compressor.py HRDocCompressor img_crop_features.shape:', img_crop_features.shape, img_crop_features)
"""print('visual_compressor.py HRDocCompressor cu_seqlens_q, cu_seqlens_q.shape:', cu_seqlens_q, cu_seqlens_q.shape)
print('visual_compressor.py HRDocCompressor cu_seqlens_k, cu_seqlens_k.shape:', cu_seqlens_k, cu_seqlens_k.shape)"""
# assert not torch.isnan(img_global_features).any()
# assert not torch.isnan(img_crop_features).any()
for x_name, x in self.compressor_crossatt.named_parameters():
try:
assert not torch.isnan(x).any()
# print('visual_compressor.py ', x_name, x.shape, x)
except Exception as e:
print(e)
print('visual_compressor.py nan', x_name, x.shape, x)
hidden_states = self.compressor_crossatt(
img_global_features.contiguous(), # Sum(L_global) x D
img_crop_features.contiguous(), # Sum(L_hr) x D
**flash_kwargs
) # Sum(L_global) x D
hidden_states = rearrange(hidden_states, '(B S) D -> S B D', B=batch_size) # L_global x N_img x D
hidden_states = self.compressor_fc(hidden_states) # L_global x N_img x D
hidden_states = hidden_states.transpose(0, 1).contiguous() # N_img x L_global x D
# print('visual_compressor.py hidden_states:', hidden_states.shape)
hidden_states = torch.cat([hidden_states, self.compressor_eos.repeat(hidden_states.shape[0], 1, 1)], dim=1) # N_img x (L_global+1) x D
# print('visual_compressor.py HRDocCompressor hidden_states.shape:', hidden_states.shape)
return hidden_states |