File size: 20,448 Bytes
fc7239c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import math
from typing import Any, Optional, Tuple, Union

from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer

import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint
from icecream import ic

from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
from einops import rearrange


class MplugDocOwlVisualMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        in_features = config.high_reso_cross_hid_size
        self.act = nn.SiLU()

        ffn_hidden_size = int(2 * 4 * in_features / 3)
        multiple_of = 256
        ffn_hidden_size = multiple_of * ((ffn_hidden_size + multiple_of - 1) // multiple_of)

        self.w1 = nn.Linear(in_features, ffn_hidden_size)
        self.w2 = nn.Linear(ffn_hidden_size, in_features)
        self.w3 = nn.Linear(in_features, ffn_hidden_size)
        self.ffn_ln = nn.LayerNorm(ffn_hidden_size, eps=config.layer_norm_eps)

        torch.nn.init.zeros_(self.w1.bias.data)
        torch.nn.init.zeros_(self.w2.bias.data)
        torch.nn.init.zeros_(self.w3.bias.data)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states)
        hidden_states = self.ffn_ln(hidden_states)
        hidden_states = self.w2(hidden_states)
        return hidden_states


class FlashCrossAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v, **kwargs):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)

            or

            q: (Sum_q, H, D), k,v : (Sum_k, H, D), 
            must with batch_size, max_seqlen_q, max_seqlen_k, cu_seqlens_q, cu_seqlens_k in kwargs
        """

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))


        if q.dim() == 4:
            batch_size, seqlen_q = q.shape[0], q.shape[1]
            q = rearrange(q, 'b s ... -> (b s) ...')
            cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
                                        device=q.device)
        else:
            batch_size, seqlen_q = kwargs['batch_size'], kwargs['max_seqlen_q']
            cu_seqlens_q = kwargs['cu_seqlens_q']

        if k.dim() == 4:
            seqlen_k = k.shape[1]
            k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [k, v]]
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
                        device=q.device)
        else:
            seqlen_k = kwargs['max_seqlen_k']
            cu_seqlens_k = kwargs['cu_seqlens_k']

        # q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        # self.dropout_p = 0
        
        """print('FlashCrossAttention: q.shape:', q.shape)
        print('FlashCrossAttention: k.shape:', k.shape)
        print('FlashCrossAttention: v.shape:', v.shape)
        print('FlashCrossAttention: cu_seqlens_q:', cu_seqlens_q)
        print('FlashCrossAttention: cu_seqlens_k:', cu_seqlens_k)"""

        # print('visual_compressor.py q.shape:', q.shape, ' k.shape:', k.shape, ' v.shape:', v.shape)
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
            self.dropout_p if self.training else 0.0,
            softmax_scale=self.softmax_scale, causal=False
        )

        if q.dim() == 4: # keep the shape of output shape same as the input query
            output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


class MplugDocOwlVisualMultiHeadAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        if config.high_reso_cross_hid_size % config.high_reso_cross_num_att_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention heads (%d)"
                % (config.high_reso_cross_hid_size, config.high_reso_cross_num_att_heads)
            )
        if config.high_reso_cross_hid_size // config.high_reso_cross_num_att_heads > 256:
            raise ValueError(
                "The hidden size of each head (%d) > 256 and is illegal for flash attention"
                % (config.high_reso_cross_hid_size // config.high_reso_cross_num_att_heads)
            )
        

        self.num_attention_heads = config.high_reso_cross_num_att_heads
        self.attention_head_size = int(config.high_reso_cross_hid_size / config.high_reso_cross_num_att_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
        self.key = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
        self.value = nn.Linear(config.high_reso_cross_hid_size, self.all_head_size)
        self.core_attention_flash = FlashCrossAttention(attention_dropout=config.high_reso_cross_dropout)

        # bias init
        torch.nn.init.zeros_(self.query.bias.data)
        torch.nn.init.zeros_(self.key.bias.data)
        torch.nn.init.zeros_(self.value.bias.data)
    
    def transpose_for_scores(self, x):
        # [B, S, D] -> [B, S, H, D] or [Sum_S, D] -> [Sum_S, H, D]
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        **kwargs
    ):
        # assert not torch.isnan(hidden_states).any()
        # assert not torch.isnan(encoder_hidden_states).any()

        key = self.transpose_for_scores(self.key(encoder_hidden_states))
        value = self.transpose_for_scores(self.value(encoder_hidden_states))
        query = self.transpose_for_scores(self.query(hidden_states))
        # print('visual_compressor.py key(after projection): ', key.shape, key)
        # print('visual_compressor.py value(after projection): ', value.shape, value)
        # print('visual_compressor.py query(after projection): ', query.shape, query)
        # assert not torch.isnan(key).any()
        # assert not torch.isnan(value).any()
        # assert not torch.isnan(query).any()
        outputs = self.core_attention_flash(q=query, k=key, v=value, **kwargs)
        outputs = rearrange(outputs, 's h d -> s (h d)').contiguous()
        # print('visual_compressor.py outputs(after cross_att): ', outputs.shape, outputs)
        return outputs


class MplugDocOwlVisualCrossOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        dim = config.high_reso_cross_hid_size
        self.out_proj = nn.Linear(dim, dim, bias=True)
        self.norm2 = nn.LayerNorm(dim)
        self.mlp = MplugDocOwlVisualMLP(config)

        # bias init
        torch.nn.init.zeros_(self.out_proj.bias.data)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        input_tensor = input_tensor + self.out_proj(hidden_states)
        input_tensor = input_tensor + self.mlp(self.norm2(input_tensor))
        return input_tensor


class MplugDocOwlVisualCrossAttentionLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = MplugDocOwlVisualMultiHeadAttention(config)
        self.output = MplugDocOwlVisualCrossOutput(config)
        self.norm1 = nn.LayerNorm(config.high_reso_cross_hid_size)
        self.normk = nn.LayerNorm(config.high_reso_cross_hid_size)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        **kwargs
    ) -> Tuple[torch.Tensor]:
        # print('visual_compressor.py hidden_states: ', hidden_states.shape, hidden_states)
        # print('visual_compressor.py encoder_hidden_states: ', encoder_hidden_states.shape, encoder_hidden_states)
        # assert not torch.isnan(hidden_states).any()
        # assert not torch.isnan(encoder_hidden_states).any()
        hidden_states = self.norm1(hidden_states)
        encoder_hidden_states = self.normk(encoder_hidden_states)
        # print('visual_compressor.py hidden_states(after norm): ', hidden_states.shape, hidden_states)
        # print('visual_compressor.py encoder_hidden_states(after norm): ', encoder_hidden_states.shape, encoder_hidden_states)
        attention_output = self.attention(
            hidden_states,
            encoder_hidden_states,
            **kwargs
        )

        outputs = self.output(attention_output, hidden_states)
        
        return outputs


class MplugDocOwlVisualCrossAttentionEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer_num = config.layer
        self.layers = nn.ModuleList(
            [MplugDocOwlVisualCrossAttentionLayer(config) for layer_idx in range(self.layer_num)]
        )
        self.gradient_checkpointing = True

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        **kwargs
    ):
        for i in range(self.layer_num):
            layer_module = self.layers[i]
            layer_outputs = layer_module(
                hidden_states,
                encoder_hidden_states,
                **kwargs
            )
            hidden_states = layer_outputs

        return hidden_states


def ensemble_crop_feats(crop_feats, patch_positions, col_feat_num):
    """
    ensemble vision feats from different crops to a feature map according the position of the raw image
    crop_feats: [N_crop, Len_feat, D]
    patch_positions: [N_crop, 2], 2 == (rowl_index, col_index)
    col_feat_num: the feature num of a row in a crop image
    """
    assert crop_feats.size(0) == patch_positions.size(0)
    row_feats = []
    crop_row = torch.max(patch_positions[:,0])+1 # 
    crop_feats = rearrange(crop_feats, '(R C) L D -> R C L D', R=crop_row) # [N_crop_row, N_crop_col, Len_feat, D]
    crop_feats = rearrange(crop_feats, 'R C (X Y) D-> R C X Y D', Y=col_feat_num) # [N_crop_row, N_crop_col, Len_row_feat, Len_col_feat, D]
    # 1. concatenate same row feats across crops; 2. ensemble row feats to get 1 feature map
    hw_feats = rearrange(crop_feats, 'R C X Y D-> (R X) (C Y) D') # [N_crop_row x Len_row_feat, N_crop_col x Len_col_feat, D]

    return hw_feats

def group_window_feats(feats, window):
    """
    collect vision feats from a window (win_row, win_col) to 1 group
    feats: [H, W, D]
    window: (win_row, win_col)
    
    return: [H/win_row, H/win_col, win_row x win_col, D]
    """

    group_feats = rearrange(feats, '(X R) (Y C) D -> (X Y) (R C) D', R=window[0], C=window[1]) # [H/win_row x H/win_col, win_row x win_col, D]
    return group_feats
    
    
def distinguish_global_crop_features(hidden_states, patch_positions, reorganize_crop_feats=True, col_feat_num=None, group_feats_by_crop_shape=False, keep_row_col=False):
    """
    distinguish global and crop features with the help of patcg_positions
    # hidden_states: [B, s+1, h] 
    # (B is the sum of cropped num across samples in a micro_batch, s is the visual tokens, +1 means the vit end token)
    # patch_positions: [B, 2], 
    # 2 == (rowl_index, col_index), the first crop is (0,0), global img is (anchor_max, anchor_max)

    col_feat_num is used when reorganize_crop_feats == True

    outputs:
    img_global_features: list of [Len_global_feat, D]
    img_crop_features: list of [Len_global_feat, D]
    """
    hidden_states = hidden_states[:, :-1, :] # remove the last vit end token emb
    # the first crop is (0,0)
    first_crop_indices = (patch_positions.sum(dim=-1) == 0).nonzero().squeeze(1) # Num_img
    # the global image is before the first crop
    global_indices = first_crop_indices - 1 # Num_img
    # print('vision2text_model.py patch_positions:', patch_positions)
    # print('vision2text_model.py global_indices:', global_indices)
    # collect cropped vision features of an identical image
    batch_size = hidden_states.size(0)
    img_global_features = []
    img_crop_features = [] # store list of Num_crop (variable) x Len_feat (fixed)
    img_crop_positions = [] # store list of Num_crop (variable) x 2 
    for i in range(len(global_indices)):
        index = global_indices[i]
        img_global_features.append(hidden_states[index])
        if i == (len(global_indices)-1):
            img_crop_features.append(hidden_states[index+1:])
            img_crop_positions.append(patch_positions[index+1:])
        else:
            next_index = global_indices[i+1]
            img_crop_features.append(hidden_states[index+1:next_index])
            img_crop_positions.append(patch_positions[index+1:next_index])
    
    if reorganize_crop_feats:
        for i in range(len(img_crop_features)):
            img_crop_features[i] = ensemble_crop_feats(img_crop_features[i], img_crop_positions[i], col_feat_num) # [H W D]
            if group_feats_by_crop_shape: # collect vision feats from a window (crop_row, crop_col) to 1 group
                crop_row = torch.max(img_crop_positions[i][:,0])+1 # 
                crop_col = torch.max(img_crop_positions[i][:,1])+1 # 
                img_crop_features[i] =  group_window_feats(img_crop_features[i], window=(crop_row, crop_col)) # [H/crop_row x W/crop_col, crop_row x crop_row, D]
            else:
                # img_crop_features = [rearrange(x, 'H W D -> (H W) D') for x in img_crop_features]
                if not keep_row_col:
                    img_crop_featuress[i] = rearrange(img_crop_featuress[i], 'H W D -> (H W) D')
    else:
        img_crop_features = [rearrange(x, 'N L D -> (N L) D') for x in img_crop_features]

    return img_global_features, img_crop_features

            
class MplugDocOwlHRDocCompressor(PreTrainedModel):
    """
    After vision-to-text module, use low-resolution global features to select high-resolution crop features with cross-attention
    the key/value from high-resolution crop features are contrained in a window size
    positions of the features within the window in raw images are the same as the global query features
    """
    def __init__(self, config, output_hidden_size, v2t_img_col_tokens):
        super().__init__(config)
        self.use_flash_attn = True
        assert self.use_flash_attn

        self.v2t_img_col_tokens = v2t_img_col_tokens

        self.compressor_crossatt = MplugDocOwlVisualCrossAttentionEncoder(config)

        self.compressor_fc = torch.nn.Linear(output_hidden_size, output_hidden_size)

        self.compressor_eos = torch.nn.Parameter(torch.randn(1, 1, output_hidden_size))

    
    def forward(self, hidden_states,  patch_positions=None):
        # hidden_states: outputs of vision2textmodel: [Sum(crop), s+1, h] 
        # (Sum(crop) is the sum of cropped num across samples in a micro_batch, s is the visual tokens, +1 is the special vit_eos token added in H-Reducer)
        # patch_positions: [Sum(crop), 2]

        # print('visual_compressor.py HRDocCompressor hidden_states.shape:', hidden_states.shape)
        # print('visual_compressor.py HRDocCompressor patch_positions.shape:', patch_positions.shape)
        
        # N_img x [L_global (fixed), D], N_img x [L_global (fixed), Crop_row x Crop_Col (Variable), D]
        img_global_features, img_crop_features = distinguish_global_crop_features(hidden_states, 
                                                patch_positions, 
                                                reorganize_crop_feats=True, 
                                                col_feat_num=self.v2t_img_col_tokens,
                                                group_feats_by_crop_shape=True)

        # cross-attention to accumulate high-resolution features
        # if self.use_flash_attn: # flash_attn_varlen_func don't need to pad crop_features
        img_global_features = torch.stack(img_global_features, dim=0).to(hidden_states.device) # Num_img x Len_global_feat x D
        batch_size, global_feat_num, seqlen_q = img_global_features.shape[0], img_global_features.shape[1], 1
        img_global_features = rearrange(img_global_features, 'b s ... -> (b s) ...')
        cu_seqlens_q = torch.arange(0, batch_size*global_feat_num+1, step=1, dtype=torch.int32, device=img_global_features.device) # # (Num_img x Len_global_feat +1, )
        cu_seqlens_k = [0]
        max_seqlens_k = 0
        for crop_feat in img_crop_features:
            for i in range(crop_feat.shape[0]): 
                cu_seqlens_k.append(cu_seqlens_k[-1]+crop_feat.shape[1]) # same k within a image shares the seq len
            max_seqlens_k = max(max_seqlens_k, crop_feat.size(1))

        cu_seqlens_k = torch.tensor(cu_seqlens_k, dtype=torch.int32).to(hidden_states.device) # (Num_img x Len_global_feat+1, )
        # cu_seqlens_k = torch.arange(0, (batch_size + 1) * max_seqlens_k, step=max_seqlens_k, dtype=torch.int32, device=img_global_features.device) # # (Num_img+1, )

        img_crop_features = torch.cat([rearrange(x, 'N L D -> (N L) D') for x in img_crop_features], dim=0).to(hidden_states.device) # Sum(L_hr) x D
        flash_kwargs = {
            'batch_size': batch_size*global_feat_num, # each feat in global feats use different keys
            'max_seqlen_q': seqlen_q, # key are unique for each query
            'max_seqlen_k': max_seqlens_k,
            'cu_seqlens_q': cu_seqlens_q, # the seq len of each q
            'cu_seqlens_k': cu_seqlens_k # the seq len of each k
        }
        # print('visual_compressor.py HRDocCompressor img_global_features.shape:', img_global_features.shape, img_global_features)
        # print('visual_compressor.py HRDocCompressor img_crop_features.shape:', img_crop_features.shape, img_crop_features)
        """print('visual_compressor.py HRDocCompressor cu_seqlens_q, cu_seqlens_q.shape:', cu_seqlens_q, cu_seqlens_q.shape)
        print('visual_compressor.py HRDocCompressor cu_seqlens_k, cu_seqlens_k.shape:', cu_seqlens_k, cu_seqlens_k.shape)"""
        # assert not torch.isnan(img_global_features).any()
        # assert not torch.isnan(img_crop_features).any()
        for x_name, x in self.compressor_crossatt.named_parameters():
            try:
                assert not torch.isnan(x).any()
                # print('visual_compressor.py ', x_name, x.shape, x)
            except Exception as e:
                print(e)
                print('visual_compressor.py nan', x_name, x.shape, x)
        hidden_states = self.compressor_crossatt(
                img_global_features.contiguous(), # Sum(L_global) x D
                img_crop_features.contiguous(),  # Sum(L_hr) x D
                **flash_kwargs
            ) # Sum(L_global) x D
        hidden_states = rearrange(hidden_states, '(B S) D -> S B D', B=batch_size) # L_global x N_img x D

        hidden_states = self.compressor_fc(hidden_states) # L_global x N_img x D

        hidden_states = hidden_states.transpose(0, 1).contiguous() # N_img x L_global x D
        # print('visual_compressor.py hidden_states:', hidden_states.shape)

        hidden_states = torch.cat([hidden_states, self.compressor_eos.repeat(hidden_states.shape[0], 1, 1)], dim=1) # N_img x (L_global+1) x D
        # print('visual_compressor.py HRDocCompressor hidden_states.shape:', hidden_states.shape)

        return hidden_states