caleb / test.py
mabrahma's picture
Upload 24 files
7c82a36 verified
import torch
import os
import torch.distributed as dist
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from accelerate import PartialState
from diffusers import StableDiffusionPipeline
from diffusers import DiffusionPipeline
#model_path = "/home/gomishra/diffusers.old/examples/text_to_image/caleb_training_2"
#model_path ="/home/gomishra/Reliance/shareddata/reliance-model-lora-sdxl/"
model_path ="/shared/prerelease/home/gomishra/diffusers/examples/text_to_image/caleb_training"
#pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16, variant="fp16",
#use_safetensors=True,)
pipe =DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
distributed_state = PartialState()
pipe.to(distributed_state.device)
#pipe.to("cuda")
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=pipe.text_encoder_2,
vae=pipe.vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16")
refiner.to("cuda")
prompts = {
"amitabh bachchan":"amitabh bachchan in black suit with blue background and KBC as logo",
"Prabhas":"prabhas with green background ",
"Shah Rukh Khan":"Shah Rukh Khan on night market street",
"Hritik Roshan":"Hritik Roshan singing on a stage at night "
}
folder_name = model_path.split("/")[-2]
#outDir = f"/data3/harshita_output/{folder_name}"
#outDir = f"/home/aac/sdxl_node2/output/try/{folder_name}"
outDir =f"/shared/prerelease/home/gomishra/diffusers/examples/text_to_image/outputdir"
if not os.path.exists(outDir):
os.makedirs(outDir)
for key in list(prompts.keys()):
print(key)
prompt=prompts[key]
image = pipe(
prompt=prompt,
num_inference_steps=50,
denoising_end=0.8,
guidance_scale=7.5,
output_type="latent",
).images
image = refiner(
prompt=prompt,
num_inference_steps=50,
denoising_start=0.8,
image=image,
).images[0]
image.save(f"{outDir}/{key}.png")