import torch import os import torch.distributed as dist import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from accelerate import PartialState from diffusers import StableDiffusionPipeline from diffusers import DiffusionPipeline #model_path = "/home/gomishra/diffusers.old/examples/text_to_image/caleb_training_2" #model_path ="/home/gomishra/Reliance/shareddata/reliance-model-lora-sdxl/" model_path ="/shared/prerelease/home/gomishra/diffusers/examples/text_to_image/caleb_training" #pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16, variant="fp16", #use_safetensors=True,) pipe =DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) distributed_state = PartialState() pipe.to(distributed_state.device) #pipe.to("cuda") refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=pipe.text_encoder_2, vae=pipe.vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16") refiner.to("cuda") prompts = { "amitabh bachchan":"amitabh bachchan in black suit with blue background and KBC as logo", "Prabhas":"prabhas with green background ", "Shah Rukh Khan":"Shah Rukh Khan on night market street", "Hritik Roshan":"Hritik Roshan singing on a stage at night " } folder_name = model_path.split("/")[-2] #outDir = f"/data3/harshita_output/{folder_name}" #outDir = f"/home/aac/sdxl_node2/output/try/{folder_name}" outDir =f"/shared/prerelease/home/gomishra/diffusers/examples/text_to_image/outputdir" if not os.path.exists(outDir): os.makedirs(outDir) for key in list(prompts.keys()): print(key) prompt=prompts[key] image = pipe( prompt=prompt, num_inference_steps=50, denoising_end=0.8, guidance_scale=7.5, output_type="latent", ).images image = refiner( prompt=prompt, num_inference_steps=50, denoising_start=0.8, image=image, ).images[0] image.save(f"{outDir}/{key}.png")