File size: 21,090 Bytes
af359c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# title: ENA model runner
# author: Taewook Kang, Kyubyung Kang
# date: 2024.3.27
# description: ENA model test and evaluation
# license: MIT
# version
#   0.1. 2024.3.27. create file
# 
import json, os, re, logging
import torch, torch.nn as nn, torch.optim as optim, numpy as np, matplotlib.pyplot as plt, seaborn as sns
import torch.nn.functional as F
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertForSequenceClassification, BertConfig, BertModel
from sklearn.metrics import confusion_matrix
from collections import defaultdict
from datetime import datetime
from tqdm import tqdm
from ena_dataset import load_train_chunk_data, update_feature_dims_freq, update_onehot_encoding

# write log file using logger
logging.basicConfig(filename= './ewnet_logs.txt', level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s', datefmt='%Y%m%d %H:%M')
logger = logging.getLogger('ewnet')

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'device: {device}')

# param
hyperparam = None

# train model
class EarthworkNetMLP(nn.Module):    
	def __init__(self, input_dim, hidden_dim, output_dim, dropout_ratio=0.2):
		super(EarthworkNetMLP, self).__init__()

		models = []
		models.append(nn.Linear(input_dim, hidden_dim[0]))
		models.append(nn.ReLU())
		models.append(nn.BatchNorm1d(hidden_dim[0]))  # Batch normalization after activation
		models.append(nn.Dropout(dropout_ratio))

		for i in range(1, len(hidden_dim)):
			models.append(nn.Linear(hidden_dim[i-1], hidden_dim[i]))
			models.append(nn.ReLU())
			models.append(nn.BatchNorm1d(hidden_dim[i]))
			models.append(nn.Dropout(dropout_ratio))
			
		models.append(nn.Linear(hidden_dim[-1], output_dim)) 
		self.layers = nn.Sequential(*models)

	def forward(self, x):
		# print("Shape of x:", x.shape)
		x = self.layers(x)
		return x

# train model using LSTM
class EarthworkNetLSTM(nn.Module):
	def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, dropout_ratio=0.2):
		super(EarthworkNetLSTM, self).__init__()

		# sequence series data. ex) token pattern(slope angle). top(0.5), bottom(0.5), top(0.6), bottom(0.6)...
		# time series features = (token_type, curve_angle)
		# label = (label_onehot)
		models = []
		
		models.append(nn.LSTM(input_dim, hidden_dim[0], num_layers, batch_first=True, dropout=dropout_ratio))
		for i in range(1, len(hidden_dim)):
			models.append(nn.Linear(hidden_dim[i-1], hidden_dim[i]))

		models.append(nn.Linear(hidden_dim[-1], output_dim))
		self.layers = nn.Sequential(*models)

	def forward(self, x):
		# print("Shape of x:", x.shape)
		for layer in self.layers:
			if type(layer) == torch.nn.modules.rnn.LSTM:
				x, _ = layer(x)
			else:
				x = layer(x)
		
		return x

# create dataset. earthwork_feature -> label
class EarthworkDataset(Dataset):
	def __init__(self, raw_data):
		self.raw_dataset = raw_data

	def __len__(self):
		return len(self.raw_dataset)

	def __getitem__(self, idx):
		# origin_data = self.raw_dataset[idx] 
		features = self.raw_dataset[idx]['feature_dims'] # already, tokenized from 'feature_text'
		label = self.raw_dataset[idx]['label_onehot']
		features = torch.tensor(features, dtype=torch.float32).to(device)
		label = torch.tensor(label, dtype=torch.float32).to(device)
		return features, label

def decode_data_to_geom(input_dataset, predictions, labels, input_feature_dims, label_kinds):
	global hyperparam
	match_count = 0
	for i in range(len(input_dataset)): # batch size
		input_geom_features = input_dataset[i].cpu().numpy()
		prediction_index = predictions[i].item()
		label_index = labels[i].cpu().numpy()

		geom_feautres = []
		for j in range(len(input_feature_dims)):
			if input_geom_features[j] == 0.0:
				continue
			geom_feautres.append(f'{input_feature_dims[j]}({input_geom_features[j]:.2f})')

		prediction_label = label_kinds[prediction_index]
		label = label_kinds[label_index]

		match = prediction_label == label
		if match:
			match_count += 1
		logger.debug(f'{hyperparam["model"]} {hyperparam["hidden_dim"]} Equal : {prediction_label == label}, Label: {label}, Predicted: {prediction_label}, Geom: {geom_feautres}')

	return match_count

def test_mlp_model(model, batch_size, test_raw_dataset, input_feature_dims, label_kinds):
	print(f'test data count: {len(test_raw_dataset)}')
	test_dataset = EarthworkDataset(test_raw_dataset)
	test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)

	# test model
	accuracies = []
	rmse = 0.0
	correct = 0
	total = 0
	total_match = 0
	with torch.no_grad():
		for i, (data, labels) in enumerate(test_dataloader):
			outputs = model(data)
			_, predicted = torch.max(outputs.data, 1)
			_, labels = torch.max(labels.data, 1)
			total += labels.size(0)
			correct += (predicted == labels).sum().item()
			accuracies.append(correct / total)

			match_count = decode_data_to_geom(data, predicted, labels, input_feature_dims, label_kinds)
			total_match += match_count

	average_accuracy = correct / total 
	print(f'Match count: {total_match}, Total count: {total}')
	print(f'Accuracy of the network on the test data: {average_accuracy:.4f}')
	return accuracies, average_accuracy

def run_MLP_LSTM(model_file_list, base_model):
	global hyperparam

	# prepare train dataset
	data_dir = './dataset'
	geom_list = load_train_chunk_data(data_dir)
	input_feature_dims = update_feature_dims_freq(geom_list) # input_feature_dims = update_feature_dims_token(geom_list)
	label_kinds = update_onehot_encoding(geom_list)

	train_raw_dataset = geom_list[:int(len(geom_list) * 0.8)]
	test_raw_dataset = geom_list[int(len(geom_list) * 0.8):]
	print(f'total data count: {len(geom_list)}')
	print(f'train data count: {len(train_raw_dataset)}, test data count: {len(test_raw_dataset)}')

	# train model and write it
	param_layers = [[128], [128, 64, 32], [256, 128, 64]] 
	if base_model == 'MLP':
		param_layers = [[128, 64, 32], [64, 128, 64], [64, 128, 64, 32], [32, 64, 32]]  
	for index, param_layer in enumerate(param_layers):
		logger.debug(f'model : {base_model}')

		params = {
			'model': base_model,
			'input_dim': len(input_feature_dims),
			'hidden_dim': param_layer, # 0.95, [128, 64, 32],
			'output_dim': len(label_kinds),
			'batch_size': 32,
			'epochs': 150, # 150, # 5000
			'lr': 0.001
		}
		hyperparam = params
		# create train model
		model = EarthworkNetMLP(params['input_dim'], params['hidden_dim'], params['output_dim']).to(device)
		if base_model == 'LSTM':
			model = EarthworkNetLSTM(params['input_dim'], params['hidden_dim'], params['output_dim']).to(device)
		model_file = './' + model_file_list[index]
		model.load_state_dict(torch.load(model_file))
		model.eval()

		accuracies, acc = test_mlp_model(model, params['batch_size'], test_raw_dataset, input_feature_dims, label_kinds)

# Generate random training data
def generate_random_text(label_index, length=100):
	base_text = f'This is text for label R{label_index + 1}. '
	random_text_length = max(0, length - len(base_text)) # Calculate the length of the random text to generate
	random_text = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(random_text_length)) # Generate the random text
	return base_text + random_text

# Define dataset class
class EarthworkTransformDataset(Dataset):
	def __init__(self, input_ids, attention_mask, labels):
		self.input_ids = input_ids
		self.attention_mask = attention_mask
		self.labels = labels

	def __len__(self):
		return len(self.input_ids)

	def __getitem__(self, idx):
		input_ids_tensor = torch.tensor(self.input_ids[idx]).to(device)
		attention_mask_tensor = torch.tensor(self.attention_mask[idx]).to(device)
		label_tensor = torch.tensor(self.labels[idx]).to(device)
		return input_ids_tensor, attention_mask_tensor, label_tensor

# custom transformer
class PositionalEncoding(nn.Module):
	def __init__(self, d_model, vocab_size=5000, dropout=0.1):
		super().__init__()
		self.dropout = nn.Dropout(p=dropout)

		pe = torch.zeros(vocab_size, d_model)
		position = torch.arange(0, vocab_size, dtype=torch.float).unsqueeze(1)
		div_term = torch.exp(
			torch.arange(0, d_model, 2).float()
			* (-math.log(10000.0) / d_model)
		)
		pe[:, 0::2] = torch.sin(position * div_term)
		pe[:, 1::2] = torch.cos(position * div_term)
		pe = pe.unsqueeze(0)
		self.register_buffer("pe", pe)

	def forward(self, x):
		x = x + self.pe[:, : x.size(1), :]
		return self.dropout(x)

class EarthworkNetTransformer(nn.Module): 
	def __init__(

		self,

		input_feature_size,

		d_model,

		num_labels,

		nhead=8,

		dim_feedforward=2048,

		dim_fc=[64, 32],

		num_layers=6,

		dropout=0.1,

		activation="relu",

		classifier_dropout=0.1,

	):
		super().__init__()

		self.d_model = d_model
		# self.pos_encoder = PositionalEncoding(d_model=d_model, dropout=dropout, vocab_size=vocab_size)
		
		self.input_fc = nn.Linear(input_feature_size, d_model)
		encoder_layer = nn.TransformerEncoderLayer(
			d_model=d_model,
			nhead=nhead,
			dim_feedforward=dim_feedforward,
			dropout=dropout
		)

		self.src_mask = None
		self.nhead = nhead
		self.transformer_encoder = nn.TransformerEncoder(
			encoder_layer,
			num_layers=num_layers,
			# TBD. output_attentions=True
		)
		self.fc_layers = []
		fc_layers_dims = [d_model] + dim_fc + [num_labels]
		for i in range(1, len(fc_layers_dims)):
			fc = nn.Linear(fc_layers_dims[i-1], fc_layers_dims[i]).to(device)
			self.fc_layers.append(fc)
		
		self.init_weights()

	def generate_square_subsequent_mask(self, sz):
		mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
		mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
		return mask        

	def init_weights(self):
		initrange = 0.1    
		for fc in self.fc_layers:
			fc.bias.data.zero_()
			fc.weight.data.uniform_(-initrange, initrange)

	def forward(self, x, attention_mask):
		# x = self.pos_encoder(x)
		if self.src_mask is None or self.src_mask.size(0) != len(x):
			device = x.device
			mask = self.generate_square_subsequent_mask(len(x)).to(device)
			self.src_mask = mask
			# batch_size = x.shape[0]
			# mask = torch.tril(torch.ones(self.nhead, batch_size, batch_size)).to(x.device)

		x = x.float()
		x = self.input_fc(x)
		x = self.transformer_encoder(x, mask=self.src_mask) # , src_key_padding_mask=attention_mask1) # , mask=attention_mask)
		# x = x.mean(dim=1)
		for fc in self.fc_layers:
			x = fc(x)

		return x

def run_transform(model_file_list):
	data_dir = './dataset'
	geom_list = load_train_chunk_data(data_dir)
	input_feature_dims = update_feature_dims_freq(geom_list) # input_feature_dims = update_feature_dims_token(geom_list)
	label_kinds = update_onehot_encoding(geom_list)
	num_labels = len(label_kinds)
	max_input_string = max(len(d['feature_text']) for d in geom_list)
	max_input_string = 320 # nhead=8. 320=8*40

	train_raw_dataset = geom_list[:int(len(geom_list) * 0.8)]
	test_raw_dataset = geom_list[int(len(geom_list) * 0.8):]
	print(f'total data count: {len(geom_list)}')
	print(f'train data count: {len(train_raw_dataset)}, test data count: {len(test_raw_dataset)}')

	# Tokenize and pad sequences
	tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
	max_length = max_input_string

	batch_sizes = [32, 64, 128]
	for index, batch_size in enumerate(batch_sizes):	
		encoding = {'input_ids': [], 'attention_mask': []}
		for d in train_raw_dataset:
			token_text = tokenizer(d['feature_text'], padding='max_length', truncation=True, max_length=max_length)
			if len(token_text['input_ids']) < max_length: # fill the rest with padding token
				token_text['input_ids'] += [tokenizer.pad_token_id] * (max_length - len(token_text['input_ids']))
				token_text['attention_mask'] += [0] * (max_length - len(token_text['attention_mask']))
			encoding['input_ids'].append(token_text['input_ids'])
			encoding['attention_mask'].append(token_text['attention_mask'])

		input_ids = encoding['input_ids']
		attention_mask = encoding['attention_mask']

		label2id = {label: i for i, label in enumerate(sorted(set(d['label'] for d in train_raw_dataset)))}
		id2label = {v: k for k, v in label2id.items()}
		labels = [label2id[d['label']] for d in train_raw_dataset] # Convert labels to numerical format

		# hyperparameters
		logger.debug(f'model : transformer')

		params = {
			'model': 'transformer',
			'input_dim': len(input_feature_dims),
			'hidden_dim': [64],
			'output_dim': len(label2id),
			'batch_size': batch_size,
			'epochs': 300,
			'lr': 1e-5
		}

		# batch_size = params['batch_size']	# 32, 64, 128
		dim_fc = params['hidden_dim']
		epochs = params['epochs'] 			# 5000 # 500 150 

		# model
		model = EarthworkNetTransformer(input_feature_size=max_length, d_model=512, num_labels=len(label2id), dim_fc=dim_fc).to(device)
		dataset = EarthworkTransformDataset(input_ids, attention_mask, labels)
		dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

		# test the model
		model_file = './' + model_file_list[index]
		model.load_state_dict(torch.load(model_file))
		model.eval()

		for i, test_raw in enumerate(test_raw_dataset):
			label = test_raw['label']
			input_text = test_raw['feature_text']
			encoding = tokenizer(input_text, return_tensors='pt', padding='max_length', truncation=True, max_length=max_length)
			input_ids = encoding['input_ids'].to(device)
			attention_mask = encoding['attention_mask'].to(device)
			output = model(input_ids, attention_mask)
			predicted_label = id2label[output.argmax().item()]

			feature_dims = input_text.split(' ')
			logger.debug(f'{params["model"]} {params["batch_size"]} Equal : {predicted_label == label}, Label: {label}, Predicted: {predicted_label}, Geom: {feature_dims}')


		print(f'test data count: {len(test_raw_dataset)}')
		encoding = tokenizer([d['feature_text'] for d in test_raw_dataset], padding='max_length', truncation=True, max_length=max_length)
		input_ids = encoding['input_ids']
		attention_mask = encoding['attention_mask']

		label2id = {label: i for i, label in enumerate(sorted(set(d['label'] for d in test_raw_dataset)))}
		id2label = {v: k for k, v in label2id.items()}
		labels = [label2id[d['label']] for d in test_raw_dataset] # Convert labels to numerical format

		test_dataset = EarthworkTransformDataset(input_ids, attention_mask, labels)
		test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=True)

		correct = 0
		total = 0
		accuracies = []
		with torch.no_grad():
			for i, (input_ids, attention_mask, labels) in enumerate(tqdm(test_dataloader, desc="test")):
				outputs = model(input_ids, attention_mask)
				_, predicted = torch.max(outputs, 1)
				total += len(labels)
				correct += (predicted == labels).sum().item()
				accuracies.append(correct / total)

		average_accuracy = correct / total 
		print(f'Accuracy of the network on the test data: {average_accuracy:.4f}')

# BERT model
class EarthworkBertDataset(Dataset):
	def __init__(self, input_ids, attention_mask, labels):
		self.input_ids = input_ids
		self.attention_mask = attention_mask
		self.labels = labels

	def __len__(self):
		return len(self.input_ids)

	def __getitem__(self, idx):
		input_ids_tensor = torch.tensor(self.input_ids[idx]).to(device)
		attention_mask_tensor = torch.tensor(self.attention_mask[idx]).to(device)
		label_tensor = torch.tensor(self.labels[idx]).to(device)
		return input_ids_tensor, attention_mask_tensor, label_tensor

# Define EarthworkNetTransformer model architecture
class EarthworkNetTransformerBert(torch.nn.Module):
	def __init__(self, num_labels):
		super(EarthworkNetTransformerBert, self).__init__()
		self.bert = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=num_labels, output_attentions=True)

	def forward(self, input_ids, attention_mask):
		outputs = self.bert(input_ids, attention_mask=attention_mask)
		return outputs['logits'], outputs['attentions']

def run_bert(model_file):
	# prepare train dataset
	data_dir = './dataset'
	geom_list = load_train_chunk_data(data_dir)
	input_feature_dims = update_feature_dims_freq(geom_list) # input_feature_dims = update_feature_dims_token(geom_list)
	label_kinds = update_onehot_encoding(geom_list)
	num_labels = len(label_kinds)
	max_input_string = max(len(d['feature_text']) for d in geom_list)

	train_raw_dataset = geom_list[:int(len(geom_list) * 0.8)]
	test_raw_dataset = geom_list[int(len(geom_list) * 0.8):]
	print(f'total data count: {len(geom_list)}')
	print(f'train data count: {len(train_raw_dataset)}, test data count: {len(test_raw_dataset)}')

	# Tokenize and pad sequences
	tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
	max_length = max_input_string

	encoding = tokenizer([d['feature_text'] for d in train_raw_dataset], padding=True, truncation=True, max_length=max_length)
	input_ids = encoding['input_ids']	# TBD. shape is 50?
	attention_mask = encoding['attention_mask']

	label2id = {label: i for i, label in enumerate(sorted(set(d['label'] for d in train_raw_dataset)))}
	id2label = {v: k for k, v in label2id.items()}
	labels = [label2id[d['label']] for d in train_raw_dataset] # Convert labels to numerical format

	# Initialize model
	model = EarthworkNetTransformerBert(num_labels=len(label2id)).to(device)

	epochs = 150 # 50  #
	batch_size = 32
	params = {
		'model': 'BERT',
		'input_dim': len(input_feature_dims),
		'hidden_dim': 512,
		'output_dim': len(label2id),
		'batch_size': batch_size,
		'epochs': epochs,
		'lr': 1e-5,
	}

	dataset = EarthworkBertDataset(input_ids, attention_mask, labels)
	dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

	# test the model
	logger.debug(f'model : bert')

	model_file = './' + model_file
	model.load_state_dict(torch.load(model_file))
	model.eval()

	for i, test_raw in enumerate(test_raw_dataset):		
		label = test_raw['label']
		input_text = test_raw['feature_text']
		encoding = tokenizer(input_text, return_tensors='pt', padding=True, truncation=True, max_length=max_length) 
		input_ids = encoding['input_ids'].to(device)
		attention_mask = encoding['attention_mask'].to(device)
		output, att = model(input_ids, attention_mask)
		predicted_label = id2label[output.argmax().item()]

		feature_dims = input_text.split(' ')
		logger.debug(f'{params["model"]} Equal : {predicted_label == label}, Label: {label}, Predicted: {predicted_label}, Geom: {feature_dims}')

		attention_matrix = att[-1]
		attention_layer = attention_matrix[-1]
		attention_mat = attention_layer[-1]
		# for j, attention_mat in enumerate(attention_layer):
		att_mat = attention_mat.detach().cpu().numpy()
		fig, ax = plt.subplots()
		cax = ax.matshow(att_mat, cmap='viridis')
		fig.colorbar(cax)
		plt.savefig(f'./graph/bert_attention_{i}.png')
		plt.close()

	print(f'test data count: {len(test_raw_dataset)}')
	encoding = tokenizer([d['feature_text'] for d in test_raw_dataset], padding=True, truncation=True, max_length=max_length)
	input_ids = encoding['input_ids']
	attention_mask = encoding['attention_mask']

	label2id = {label: i for i, label in enumerate(sorted(set(d['label'] for d in test_raw_dataset)))}
	id2label = {v: k for k, v in label2id.items()}
	labels = [label2id[d['label']] for d in test_raw_dataset] # Convert labels to numerical format

	test_dataset = EarthworkBertDataset(input_ids, attention_mask, labels)
	test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=True)

	correct = 0
	total = 0
	accuracies = []
	with torch.no_grad():
		for i, (input_ids, attention_mask, labels) in enumerate(tqdm(test_dataloader, desc="test")):
			outputs, att = model(input_ids, attention_mask)
			_, predicted = torch.max(outputs, 1)
			total += len(labels)
			correct += (predicted == labels).sum().item()
			accuracies.append(correct / total)
			y_score = torch.nn.functional.softmax(outputs, dim=1)

	average_accuracy = correct / total 
	print(f'Accuracy of the network on the test data: {average_accuracy:.4f}')


if __name__ == '__main__':
	models = ['earthwork_model_20240503_1650.pth','earthwork_model_20240503_1714.pth','earthwork_model_20240503_1716.pth','earthwork_model_20240503_1718.pth']  
	run_MLP_LSTM(models, 'MLP')

	models = ['earthwork_model_20240503_1730.pth','earthwork_model_20240503_1732.pth','earthwork_model_20240503_1734.pth']
	run_MLP_LSTM(models, 'LSTM')

	models = ['earthwork_trans_model_20240503_2003.pth','earthwork_trans_model_20240503_2014.pth','earthwork_trans_model_20240503_2021.pth']
	run_transform(models)
	
	run_bert('earthwork_trans_model_20240504_0103.pth')