File size: 12,226 Bytes
af359c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# title: create earthwwork train dataset
# author: Taewook Kang
# date: 2024.3.27
# description: create earthwork train dataset
# license: MIT
# version
#   0.1. 2024.3.27. create file
# 
import os, math, argparse, json, re, traceback, numpy as np, pandas as pd, trimesh, laspy, shutil
import logging, matplotlib.pyplot as plt, shapely
from shapely.geometry import Polygon, LineString
from scipy.spatial import distance
from tqdm import trange, tqdm
from math import pi

logging.basicConfig(level=logging.DEBUG, filename='logs.txt', 
					format='%(asctime)s %(levelname)s %(message)s', 
					datefmt='%H:%M:%S')
logger = logging.getLogger("prep")

_precision = 0.00001

def get_bbox(polyline):
	polyline_np = np.array(polyline)
	xmin, ymin = np.amin(polyline_np, axis=0)
	xmax, ymax = np.amax(polyline_np, axis=0)
	return (xmin, ymin, xmax, ymax)

def get_center_point(pline):
	if len(pline) == 0:
		return (0, 0)
	xs = [p[0] for p in pline]
	ys = [p[1] for p in pline]
	return (sum(xs) / len(pline), sum(ys) / len(pline))

def intersect_line(line1, line2):
	(x1, y1), (x2, y2) = line1
	(x3, y3), (x4, y4) = line2

	denominator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
	if denominator == 0:
		return None  # lines are parallel

	x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / denominator
	y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / denominator

	# check (x, y) in line1 and line2
	if x < min(x1, x2) or x > max(x1, x2) or x < min(x3, x4) or x > max(x3, x4):
		return None

	return (x, y)	

def get_positions_pline(base_pline, target_pline):
	target_pos_marks = []
	for i in range(len(target_pline)):
		target = [target_pline[i], (target_pline[i][0], target_pline[i][1] + 1e+10)] # vertical line to check below
		pos = 0.0 
		for j in range(len(base_pline) - 1):
			base = [base_pline[j], base_pline[j + 1]]
			intersect = intersect_line(base, target)
			if intersect == None:
				continue
			
			if equal(intersect[1], target[0][1]): 
				pos = 0.0
				break
			
			pos = -1.0 if intersect[1] > target[0][1] else 1.0
			break
		target_pos_marks.append(pos)

	return target_pos_marks

def get_below_pline(base_pline, target_pline):
	pos_marks = get_positions_pline(base_pline, target_pline)
	average = sum(pos_marks) / len(pos_marks)
	return average < 0.0

def get_geometry(xsec, label):
	for geom in xsec['geom']:
		if geom['label'] == label:
			return geom
	return None

def is_point_in_rect(point1, point2, perp):
	return is_point_in_rectangle(point1[0], point1[1], point2[0], point2[1], perp[0], perp[1])

def is_point_in_rectangle(x1, y1, x2, y2, x, y):
	# Ensure that x1 <= x2 and y1 <= y2
	x1, x2 = min(x1, x2), max(x1, x2)
	y1, y2 = min(y1, y2), max(y1, y2)

	# Check if (x, y) is within the rectangle
	return x1 <= x <= x2 and y1 <= y <= y2	

def sign_distance(a, b, c, p):
	d = math.sqrt(a*a + b*b)
	if d == 0.0:
		lp = 0.0
	else:
		lp = (a * p[0] + b * p[1] + c) / d
	return lp

def equal(a, b):
	return abs(a - b) < _precision

def equal_point(p1, p2):
	return equal(p1[0], p2[0]) and equal(p1[1], p2[1])

def get_angle(x1, y1, x2, y2):
	pi = math.acos(-1.0)

	# Caculate the quadrant of the line.
	dx = x2 - x1
	dy = y2 - y1

	# Calculate the angle in radians for lines in the left and right quadrants
	if dx == 0 and dy == 0:
		return -1.0
	if dy < 0 and dx == 0:
		angle_radius = pi + pi / 2
	elif dy > 0 and dx == 0:
		angle_radius = pi / 2
	else:
		angle_radius = math.atan(dy / dx)

	# Adjust the angle for different quadrants
	if dy >= 0 and dx > 0:
		pass
	if dy < 0 and dx > 0:
		angle_radius += 2 * pi
	elif dx < 0:
		angle_radius += pi

	return angle_radius

def line_coefficients(point1, point2):
    x1, y1 = point1
    x2, y2 = point2

    A = y2 - y1
    B = x1 - x2
    C = x2*y1 - x1*y2

    return A, B, C

def sign_point_on_line(point1, point2, new_point):
	if equal(point1[0], new_point[0]) and equal(point1[1], new_point[1]):
		return 0.0
	if equal(point2[0], new_point[0]) and equal(point2[1], new_point[1]):
		return 0.0
	
	line_A, line_B, line_C = line_coefficients(point1, point2)
	x, y = new_point
	value = line_A * x + line_B * y + line_C
	if math.fabs(value) < _precision:
		return 0.0
	elif value > 0.0:
		return 1.0
	return -1.0

def sign_distance_on_line(line_point1, line_point2, point):
	direction = sign_point_on_line(line_point1, line_point2, point)
	if direction == 0:
		return 0.0

	if math.fabs(line_point1[0] - line_point2[0]) < _precision and math.fabs(line_point1[1] <= line_point2[1]) < _precision:
		return 0.0

	# TBD. bug
	x = point[0]
	y = point[1]
	x1 = line_point1[0]
	y1 = line_point1[1]
	x2 = line_point2[0]
	y2 = line_point2[1]

	if x1 <= x2:
		a = 1
		b = 0
		c = -x1
	else:
		m = (y2 - y1) / (x2 - x1)
		a = -m
		b = 1
		c = -y1 + (m * x1)

	dist = abs(a * x + b * y + c) / math.sqrt(a * a + b * b)
	dist *= float(direction)

	return dist

def is_point_on_line(point1, point2, perp):
	if is_point_in_rect(point1, point2, perp) == False:
		return False
	direction = sign_point_on_line(point1, point2, perp)
	if math.fabs(direction) < _precision:
		return True
	return False

def is_overlap_line(line, part_seg):
	p1, p2 = line
	p3, p4 = part_seg

	f1 = is_point_on_line(p1, p2, p3)
	f2 = is_point_on_line(p1, p2, p4)

	if (f1 or f2) and f1 != f2: # dangling point is not overlap.
		if f1 and (equal_point(p1, p3) or equal_point(p2, p3)): 
			return False
		if f2 and (equal_point(p1, p4) or equal_point(p2, p4)): 
			return False

	return f1 or f2

def is_on_pline(polyline, base_line):
	p1 = base_line[0]
	p2 = base_line[1]

	for i in range(len(polyline) - 1):
		p3 = polyline[i]
		p4 = polyline[i + 1]
		if is_overlap_line((p1, p2), (p3, p4)) or is_overlap_line((p3, p4), (p1, p2)):
			return True

	return False

def get_match_line_labels(xsec, base_geom, base_line):		
	labels = []
	for geom in xsec['geom']:
		if geom == base_geom:
			continue
		geom_label = geom['label']
		base_label = base_geom['label']
		if geom_label == base_label:
			continue
		closed = geom['closed']
		if closed == True: # only polyline is considered
			continue
		if geom_label == 'center':
			continue

		polyline = geom['polyline']
		if is_on_pline(polyline, base_line):
			labels.append(geom['label'])
	return labels

def get_seq_feature_tokens(xsec, geom, closed_type):
	polyline = geom['polyline']
	closed = geom['closed']
	if closed != closed_type:
		return []

	lines = []
	for i in range(len(polyline) - 1):
		line = (polyline[i], polyline[i + 1])
		lines.append(line)	

	geom_tokens = []
	for line in lines:
		labels = get_match_line_labels(xsec, geom, line)
		if len(labels) == 0:
			continue

		# if len(labels) == 1:
		# 	geom_tokens.append(labels[0])
		# else:
		geom_tokens.extend(labels)

	return geom_tokens

def translate_geometry(xsec, cp):
	for geom in xsec['geom']:
		polyline = geom['polyline']
		geom['polyline'] = [(p[0] - cp[0], p[1] - cp[1]) for p in polyline]

	return xsec

def is_closed(polyline):	
	if equal_point(polyline[0], polyline[-1]):
		return True
	return False

def summery_feature(features):
	sum_features = []
	if len(features) == 0:
		return sum_features

	index = 0
	while index < len(features):
		f = features[index]
		sum_feature = f
		if type(f) == list:
			sum_feature = summery_feature(f)
			if len(sum_feature) == 1:
				sum_feature = sum_feature[0]
		elif type(f) == str:
			label = f
			# find last index of same level in features array with label
			last_index = index
			for i in range(index + 1, len(features)):
				if type(features[i]) == str:
					if features[i] == label:
						last_index = i
					else:
						break
				else:
					break
			if last_index != index:
				sum_feature = (f'{f}({last_index - index + 1})')
			index = last_index
		else:
			pass
		
		sum_features.append(sum_feature)
		index += 1
	
	return sum_features

def get_intersection_count(xsec, base_geom, target_label):
	pave_top = get_geometry(xsec, 'pave_surface')
	if pave_top == None:
		return 0

	polyline = base_geom['polyline']
	polygon = Polygon(polyline)
	base_p1 = polygon.centroid
	base_p2 = (base_p1.x, base_p1.y + 1e+10)
	vertical_line = LineString([base_p1, base_p2])

	count = 0
	for target_geom in xsec['geom']:
		if base_geom == target_geom:
			continue
		label = target_geom['label']
		if re.search(target_label, label) == None:
			continue

		# check intersection
		target_polyline = target_geom['polyline']
		polyline = LineString(target_polyline)
		ip = shapely.intersection(polyline, vertical_line) # https://shapely.readthedocs.io/en/stable/reference/shapely.intersection.html
		if ip.is_empty:
			continue
		count += 1

	return count

def update_xsection_feature(xsec):
	gnd_geom = get_geometry(xsec, 'ground')
	if gnd_geom == None:
		return None
	
	center = get_geometry(xsec, 'center')
	if center == None or 'polyline' not in center:
		return None
	cp = get_center_point(center['polyline'])

	xsec = translate_geometry(xsec, cp)
	station = xsec['station']

	index = 0
	while index < len(xsec['geom']):
		geom = xsec['geom'][index]
		label = geom['label']
		polyline = geom['polyline']
		closed = geom['closed']
		if len(polyline) <= 2 or closed == False:
			index += 1
			continue
		
		pt1 = polyline[0]
		pt2 = polyline[-1]
		if equal_point(pt1, pt2) == False:	# closed polyline
			polyline.append(pt1)

		# noise filtering
		polygon = Polygon(polyline) # calculate area of polyline as polygon
		if math.fabs(polygon.area) < _precision:
			xsec['geom'].pop(index) # remove index element in xsec['geom']
			continue

		if station == '1+660.00000' and label == 'cut_ditch':
			label = 'cut_ditch'

		# processing
		if get_below_pline(gnd_geom['polyline'], polyline):
			geom['earthwork_feature'].append('below')
		else:
			geom['earthwork_feature'].append('above')

		if re.search('pave_.*', label):
			pave_int_count = get_intersection_count(xsec, geom, 'pave_.*')
			geom['earthwork_feature'].append(f'pave_int({pave_int_count})')

		tokens = get_seq_feature_tokens(xsec, geom, True)
		if len(tokens) == 1:
			geom['earthwork_feature'].append(tokens[0])
		else:
			geom['earthwork_feature'].extend(tokens)

		geom['earthwork_feature'] = summery_feature(geom['earthwork_feature'])

		# print(f'{station}. {label} feature: {geom["earthwork_feature"]}')
		logger.debug(f'{station}. {label} feature: {geom["earthwork_feature"]}')
		index += 1

	return xsec

def update_xsections_feature(xsections):
	# update closed polygon
	for xsec in xsections:
		for geom in xsec['geom']:
			label = geom['label']
			polyline = geom['polyline']
			if len(polyline) < 2:
				continue
			closed = is_closed(polyline)
			if closed == False: # exception case, pavement
				closed = False if re.search('pave_layer.*', label) == None else True
			geom['closed'] = closed

	# update features
	out_xsections = []
	for xsec in xsections:
		out_xsec = update_xsection_feature(xsec)
		if out_xsec == None:
			continue
		out_xsections.append(out_xsec)

	return out_xsections

def main():
	parser = argparse.ArgumentParser(description='create earthwork train dataset')
	parser.add_argument('--input', type=str, default='output/', help='input folder')
	parser.add_argument('--output', type=str, default='dataset/', help='output folder')

	args = parser.parse_args()
	try:
		file_names = os.listdir(args.input)
		for file_name in tqdm(file_names):
			if file_name.endswith('.json') == False:
				continue
			print(f'processing {file_name}')
			data = None
			with open(os.path.join(args.input, file_name), 'r') as f:
				data = json.load(f)

			out_xsections = update_xsections_feature(data)
			
			output_file = os.path.join(args.output, file_name)
			with open(output_file, 'w') as f:
				json.dump(out_xsections, f, indent=4)

	except Exception as e:
		print(f'error: {e}')
		traceback.print_exc()

if __name__ == '__main__':
	main()