File size: 12,226 Bytes
af359c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# title: create earthwwork train dataset
# author: Taewook Kang
# date: 2024.3.27
# description: create earthwork train dataset
# license: MIT
# version
# 0.1. 2024.3.27. create file
#
import os, math, argparse, json, re, traceback, numpy as np, pandas as pd, trimesh, laspy, shutil
import logging, matplotlib.pyplot as plt, shapely
from shapely.geometry import Polygon, LineString
from scipy.spatial import distance
from tqdm import trange, tqdm
from math import pi
logging.basicConfig(level=logging.DEBUG, filename='logs.txt',
format='%(asctime)s %(levelname)s %(message)s',
datefmt='%H:%M:%S')
logger = logging.getLogger("prep")
_precision = 0.00001
def get_bbox(polyline):
polyline_np = np.array(polyline)
xmin, ymin = np.amin(polyline_np, axis=0)
xmax, ymax = np.amax(polyline_np, axis=0)
return (xmin, ymin, xmax, ymax)
def get_center_point(pline):
if len(pline) == 0:
return (0, 0)
xs = [p[0] for p in pline]
ys = [p[1] for p in pline]
return (sum(xs) / len(pline), sum(ys) / len(pline))
def intersect_line(line1, line2):
(x1, y1), (x2, y2) = line1
(x3, y3), (x4, y4) = line2
denominator = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
if denominator == 0:
return None # lines are parallel
x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / denominator
y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / denominator
# check (x, y) in line1 and line2
if x < min(x1, x2) or x > max(x1, x2) or x < min(x3, x4) or x > max(x3, x4):
return None
return (x, y)
def get_positions_pline(base_pline, target_pline):
target_pos_marks = []
for i in range(len(target_pline)):
target = [target_pline[i], (target_pline[i][0], target_pline[i][1] + 1e+10)] # vertical line to check below
pos = 0.0
for j in range(len(base_pline) - 1):
base = [base_pline[j], base_pline[j + 1]]
intersect = intersect_line(base, target)
if intersect == None:
continue
if equal(intersect[1], target[0][1]):
pos = 0.0
break
pos = -1.0 if intersect[1] > target[0][1] else 1.0
break
target_pos_marks.append(pos)
return target_pos_marks
def get_below_pline(base_pline, target_pline):
pos_marks = get_positions_pline(base_pline, target_pline)
average = sum(pos_marks) / len(pos_marks)
return average < 0.0
def get_geometry(xsec, label):
for geom in xsec['geom']:
if geom['label'] == label:
return geom
return None
def is_point_in_rect(point1, point2, perp):
return is_point_in_rectangle(point1[0], point1[1], point2[0], point2[1], perp[0], perp[1])
def is_point_in_rectangle(x1, y1, x2, y2, x, y):
# Ensure that x1 <= x2 and y1 <= y2
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
# Check if (x, y) is within the rectangle
return x1 <= x <= x2 and y1 <= y <= y2
def sign_distance(a, b, c, p):
d = math.sqrt(a*a + b*b)
if d == 0.0:
lp = 0.0
else:
lp = (a * p[0] + b * p[1] + c) / d
return lp
def equal(a, b):
return abs(a - b) < _precision
def equal_point(p1, p2):
return equal(p1[0], p2[0]) and equal(p1[1], p2[1])
def get_angle(x1, y1, x2, y2):
pi = math.acos(-1.0)
# Caculate the quadrant of the line.
dx = x2 - x1
dy = y2 - y1
# Calculate the angle in radians for lines in the left and right quadrants
if dx == 0 and dy == 0:
return -1.0
if dy < 0 and dx == 0:
angle_radius = pi + pi / 2
elif dy > 0 and dx == 0:
angle_radius = pi / 2
else:
angle_radius = math.atan(dy / dx)
# Adjust the angle for different quadrants
if dy >= 0 and dx > 0:
pass
if dy < 0 and dx > 0:
angle_radius += 2 * pi
elif dx < 0:
angle_radius += pi
return angle_radius
def line_coefficients(point1, point2):
x1, y1 = point1
x2, y2 = point2
A = y2 - y1
B = x1 - x2
C = x2*y1 - x1*y2
return A, B, C
def sign_point_on_line(point1, point2, new_point):
if equal(point1[0], new_point[0]) and equal(point1[1], new_point[1]):
return 0.0
if equal(point2[0], new_point[0]) and equal(point2[1], new_point[1]):
return 0.0
line_A, line_B, line_C = line_coefficients(point1, point2)
x, y = new_point
value = line_A * x + line_B * y + line_C
if math.fabs(value) < _precision:
return 0.0
elif value > 0.0:
return 1.0
return -1.0
def sign_distance_on_line(line_point1, line_point2, point):
direction = sign_point_on_line(line_point1, line_point2, point)
if direction == 0:
return 0.0
if math.fabs(line_point1[0] - line_point2[0]) < _precision and math.fabs(line_point1[1] <= line_point2[1]) < _precision:
return 0.0
# TBD. bug
x = point[0]
y = point[1]
x1 = line_point1[0]
y1 = line_point1[1]
x2 = line_point2[0]
y2 = line_point2[1]
if x1 <= x2:
a = 1
b = 0
c = -x1
else:
m = (y2 - y1) / (x2 - x1)
a = -m
b = 1
c = -y1 + (m * x1)
dist = abs(a * x + b * y + c) / math.sqrt(a * a + b * b)
dist *= float(direction)
return dist
def is_point_on_line(point1, point2, perp):
if is_point_in_rect(point1, point2, perp) == False:
return False
direction = sign_point_on_line(point1, point2, perp)
if math.fabs(direction) < _precision:
return True
return False
def is_overlap_line(line, part_seg):
p1, p2 = line
p3, p4 = part_seg
f1 = is_point_on_line(p1, p2, p3)
f2 = is_point_on_line(p1, p2, p4)
if (f1 or f2) and f1 != f2: # dangling point is not overlap.
if f1 and (equal_point(p1, p3) or equal_point(p2, p3)):
return False
if f2 and (equal_point(p1, p4) or equal_point(p2, p4)):
return False
return f1 or f2
def is_on_pline(polyline, base_line):
p1 = base_line[0]
p2 = base_line[1]
for i in range(len(polyline) - 1):
p3 = polyline[i]
p4 = polyline[i + 1]
if is_overlap_line((p1, p2), (p3, p4)) or is_overlap_line((p3, p4), (p1, p2)):
return True
return False
def get_match_line_labels(xsec, base_geom, base_line):
labels = []
for geom in xsec['geom']:
if geom == base_geom:
continue
geom_label = geom['label']
base_label = base_geom['label']
if geom_label == base_label:
continue
closed = geom['closed']
if closed == True: # only polyline is considered
continue
if geom_label == 'center':
continue
polyline = geom['polyline']
if is_on_pline(polyline, base_line):
labels.append(geom['label'])
return labels
def get_seq_feature_tokens(xsec, geom, closed_type):
polyline = geom['polyline']
closed = geom['closed']
if closed != closed_type:
return []
lines = []
for i in range(len(polyline) - 1):
line = (polyline[i], polyline[i + 1])
lines.append(line)
geom_tokens = []
for line in lines:
labels = get_match_line_labels(xsec, geom, line)
if len(labels) == 0:
continue
# if len(labels) == 1:
# geom_tokens.append(labels[0])
# else:
geom_tokens.extend(labels)
return geom_tokens
def translate_geometry(xsec, cp):
for geom in xsec['geom']:
polyline = geom['polyline']
geom['polyline'] = [(p[0] - cp[0], p[1] - cp[1]) for p in polyline]
return xsec
def is_closed(polyline):
if equal_point(polyline[0], polyline[-1]):
return True
return False
def summery_feature(features):
sum_features = []
if len(features) == 0:
return sum_features
index = 0
while index < len(features):
f = features[index]
sum_feature = f
if type(f) == list:
sum_feature = summery_feature(f)
if len(sum_feature) == 1:
sum_feature = sum_feature[0]
elif type(f) == str:
label = f
# find last index of same level in features array with label
last_index = index
for i in range(index + 1, len(features)):
if type(features[i]) == str:
if features[i] == label:
last_index = i
else:
break
else:
break
if last_index != index:
sum_feature = (f'{f}({last_index - index + 1})')
index = last_index
else:
pass
sum_features.append(sum_feature)
index += 1
return sum_features
def get_intersection_count(xsec, base_geom, target_label):
pave_top = get_geometry(xsec, 'pave_surface')
if pave_top == None:
return 0
polyline = base_geom['polyline']
polygon = Polygon(polyline)
base_p1 = polygon.centroid
base_p2 = (base_p1.x, base_p1.y + 1e+10)
vertical_line = LineString([base_p1, base_p2])
count = 0
for target_geom in xsec['geom']:
if base_geom == target_geom:
continue
label = target_geom['label']
if re.search(target_label, label) == None:
continue
# check intersection
target_polyline = target_geom['polyline']
polyline = LineString(target_polyline)
ip = shapely.intersection(polyline, vertical_line) # https://shapely.readthedocs.io/en/stable/reference/shapely.intersection.html
if ip.is_empty:
continue
count += 1
return count
def update_xsection_feature(xsec):
gnd_geom = get_geometry(xsec, 'ground')
if gnd_geom == None:
return None
center = get_geometry(xsec, 'center')
if center == None or 'polyline' not in center:
return None
cp = get_center_point(center['polyline'])
xsec = translate_geometry(xsec, cp)
station = xsec['station']
index = 0
while index < len(xsec['geom']):
geom = xsec['geom'][index]
label = geom['label']
polyline = geom['polyline']
closed = geom['closed']
if len(polyline) <= 2 or closed == False:
index += 1
continue
pt1 = polyline[0]
pt2 = polyline[-1]
if equal_point(pt1, pt2) == False: # closed polyline
polyline.append(pt1)
# noise filtering
polygon = Polygon(polyline) # calculate area of polyline as polygon
if math.fabs(polygon.area) < _precision:
xsec['geom'].pop(index) # remove index element in xsec['geom']
continue
if station == '1+660.00000' and label == 'cut_ditch':
label = 'cut_ditch'
# processing
if get_below_pline(gnd_geom['polyline'], polyline):
geom['earthwork_feature'].append('below')
else:
geom['earthwork_feature'].append('above')
if re.search('pave_.*', label):
pave_int_count = get_intersection_count(xsec, geom, 'pave_.*')
geom['earthwork_feature'].append(f'pave_int({pave_int_count})')
tokens = get_seq_feature_tokens(xsec, geom, True)
if len(tokens) == 1:
geom['earthwork_feature'].append(tokens[0])
else:
geom['earthwork_feature'].extend(tokens)
geom['earthwork_feature'] = summery_feature(geom['earthwork_feature'])
# print(f'{station}. {label} feature: {geom["earthwork_feature"]}')
logger.debug(f'{station}. {label} feature: {geom["earthwork_feature"]}')
index += 1
return xsec
def update_xsections_feature(xsections):
# update closed polygon
for xsec in xsections:
for geom in xsec['geom']:
label = geom['label']
polyline = geom['polyline']
if len(polyline) < 2:
continue
closed = is_closed(polyline)
if closed == False: # exception case, pavement
closed = False if re.search('pave_layer.*', label) == None else True
geom['closed'] = closed
# update features
out_xsections = []
for xsec in xsections:
out_xsec = update_xsection_feature(xsec)
if out_xsec == None:
continue
out_xsections.append(out_xsec)
return out_xsections
def main():
parser = argparse.ArgumentParser(description='create earthwork train dataset')
parser.add_argument('--input', type=str, default='output/', help='input folder')
parser.add_argument('--output', type=str, default='dataset/', help='output folder')
args = parser.parse_args()
try:
file_names = os.listdir(args.input)
for file_name in tqdm(file_names):
if file_name.endswith('.json') == False:
continue
print(f'processing {file_name}')
data = None
with open(os.path.join(args.input, file_name), 'r') as f:
data = json.load(f)
out_xsections = update_xsections_feature(data)
output_file = os.path.join(args.output, file_name)
with open(output_file, 'w') as f:
json.dump(out_xsections, f, indent=4)
except Exception as e:
print(f'error: {e}')
traceback.print_exc()
if __name__ == '__main__':
main() |