mac999 commited on
Commit
1ce4585
·
verified ·
1 Parent(s): 4aa5f9f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -5
README.md CHANGED
@@ -56,13 +56,29 @@ The ENA is detailed in the paper *Earthwork Network Architecture (ENA): Research
56
  - **Libraries**: Install the required libraries using `pip install`. Detailed dependencies will be provided in the code files.
57
 
58
  ### Data Preparation
59
- 1. **Input Data**:
60
- - Prepare CAD cross-sectional drawings as input files.
 
 
 
 
61
  - Use the provided scripts to preprocess and tokenize geometrical features.
62
-
 
 
 
63
  2. **Training Data**:
64
- - Features are tokenized into sequences for MLP, LSTM, Transformers, and LLM models.
 
 
 
65
 
 
 
 
 
 
 
66
  ### Training and Evaluation
67
  1. Select the model architecture (`MLP`, `LSTM`, `Transformer`, or `LLM`).
68
  2. Configure hyperparameters (batch size, learning rate, etc.) as required.
@@ -89,6 +105,6 @@ This project is licensed under the MIT License.
89
  ## Citation
90
  If you use this repository, please cite:
91
  ```
92
- Kang, T.; Kang, K. Earthwork Network Architecture (ENA): Research for Earthwork Quantity Estimation Method Improvement with Large Language Models. Appl. Sci. 2024, 14, 10517.
93
  https://doi.org/10.3390/app142210517
94
  ```
 
56
  - **Libraries**: Install the required libraries using `pip install`. Detailed dependencies will be provided in the code files.
57
 
58
  ### Data Preparation
59
+ 1. **Prepare Train Dataset**:
60
+ - Prepare CAD cross-sectional drawings as input files and load it on Autocad. Run the below program to extract the entities per each cross-section in the drawing. In addition, you can define the earthwork item's layer name in config.json.
61
+ ```bash
62
+ python create_earthwork_dataset.py --config config.json --output output/ --view output/chain_chunk_6.json
63
+ ```
64
+ - In reference, we assume that each earthwork item's layer including entities were segmented(Please refer to the below paper).
65
  - Use the provided scripts to preprocess and tokenize geometrical features.
66
+ ```bash
67
+ python prepare_dataset.py --input output/ --output dataset/
68
+ ```
69
+
70
  2. **Training Data**:
71
+ - Features are tokenized into sequences for MLP, LSTM, Transformers, and LLM models. We'll upload the train source file after arrangement.
72
+ ```bash
73
+ python train_ena_model.py --model_type [MLP|LSTM|Transformer|LLM]
74
+ ```
75
 
76
+ 3. **Run and Test ENA model**:
77
+ - Run the below program to run and test the each ENA model. It will generate log and graph image files to check the performance.
78
+ ```bash
79
+ python ena_run_model.py --model_type [MLP|LSTM|Transformer|LLM]
80
+ ```
81
+
82
  ### Training and Evaluation
83
  1. Select the model architecture (`MLP`, `LSTM`, `Transformer`, or `LLM`).
84
  2. Configure hyperparameters (batch size, learning rate, etc.) as required.
 
105
  ## Citation
106
  If you use this repository, please cite:
107
  ```
108
+ Kang, T.; Kang, K. [Earthwork Network Architecture (ENA): Research for Earthwork Quantity Estimation Method Improvement with Large Language Models](https://www.mdpi.com/2076-3417/14/22/10517). Appl. Sci. 2024, 14, 10517.
109
  https://doi.org/10.3390/app142210517
110
  ```