macadeliccc
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,166 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
|
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
|
|
|
65 |
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
75 |
|
76 |
-
|
|
|
|
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
-
|
|
|
89 |
|
90 |
-
|
|
|
|
|
91 |
|
|
|
92 |
|
93 |
-
|
|
|
|
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
-
|
|
|
100 |
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
## Evaluation
|
104 |
|
105 |
-
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
|
115 |
-
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
|
|
|
201 |
|
|
|
|
1 |
---
|
2 |
+
dataset: Thermostatic/flowers
|
3 |
+
license: other
|
4 |
+
license_name: gemma-terms-of-use
|
5 |
+
license_link: https://ai.google.dev/gemma/terms
|
6 |
---
|
7 |
|
8 |
+
# Gemma Orchid 7b
|
9 |
|
10 |
+
<div align="center">
|
11 |
|
12 |
+
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/7pqiroePJW0WWm6JxwBoO.webp)
|
13 |
|
14 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
15 |
+
</div>
|
16 |
|
17 |
+
This model is the second checkpoint of a future project. Its capable of function calling as well as having a strong base in communicational skills.
|
18 |
|
19 |
+
This model has been finetuned on roughly 80k samples so far.
|
20 |
|
21 |
+
# Training
|
22 |
|
23 |
+
+ Time to complete: ~20 hours
|
24 |
+
+ Datasets: Thermostatic/flowers, Intel/orca_dpo_pairs, jondurbin/truthy-dpo-v0.1
|
25 |
+
+ Cost: ~$20 in H100 hours
|
26 |
+
+ Evaluation loss: 0.69
|
27 |
+
+ Method: LoRa
|
28 |
+
+ Prompt Format: ChatML
|
29 |
|
30 |
+
Thermostatic/flowers is a blend of open source model generations formatted in ShareGPT. It also includes all of capybara.
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
#### Running the model on a CPU
|
33 |
|
34 |
+
```python
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
36 |
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
38 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
|
|
|
39 |
|
40 |
+
input_text = "Write me a poem about Machine Learning."
|
41 |
+
input_ids = tokenizer(input_text, return_tensors="pt")
|
42 |
|
43 |
+
outputs = model.generate(**input_ids)
|
44 |
+
print(tokenizer.decode(outputs[0]))
|
45 |
+
```
|
46 |
|
|
|
47 |
|
48 |
+
#### Running the model on a single / multi GPU
|
49 |
|
|
|
50 |
|
51 |
+
```python
|
52 |
+
# pip install accelerate
|
53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
54 |
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
56 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto")
|
57 |
|
58 |
+
input_text = "Write me a poem about Machine Learning."
|
59 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
60 |
|
61 |
+
outputs = model.generate(**input_ids)
|
62 |
+
print(tokenizer.decode(outputs[0]))
|
63 |
+
```
|
64 |
|
|
|
65 |
|
66 |
+
#### Running the model on a GPU using different precisions
|
67 |
|
68 |
+
* _Using `torch.float16`_
|
69 |
|
70 |
+
```python
|
71 |
+
# pip install accelerate
|
72 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
75 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.float16)
|
76 |
|
77 |
+
input_text = "Write me a poem about Machine Learning."
|
78 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
79 |
|
80 |
+
outputs = model.generate(**input_ids)
|
81 |
+
print(tokenizer.decode(outputs[0]))
|
82 |
+
```
|
83 |
|
84 |
+
* _Using `torch.bfloat16`_
|
85 |
|
86 |
+
```python
|
87 |
+
# pip install accelerate
|
88 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
89 |
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
91 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.bfloat16)
|
92 |
|
93 |
+
input_text = "Write me a poem about Machine Learning."
|
94 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
95 |
|
96 |
+
outputs = model.generate(**input_ids)
|
97 |
+
print(tokenizer.decode(outputs[0]))
|
98 |
+
```
|
99 |
|
100 |
+
#### Quantized Versions through `bitsandbytes`
|
101 |
|
102 |
+
* _Using 8-bit precision (int8)_
|
103 |
|
104 |
+
```python
|
105 |
+
# pip install bitsandbytes accelerate
|
106 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
107 |
|
108 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
109 |
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
111 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
|
112 |
|
113 |
+
input_text = "Write me a poem about Machine Learning."
|
114 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
115 |
|
116 |
+
outputs = model.generate(**input_ids)
|
117 |
+
print(tokenizer.decode(outputs[0]))
|
118 |
+
```
|
119 |
|
120 |
+
* _Using 4-bit precision_
|
121 |
|
122 |
+
```python
|
123 |
+
# pip install bitsandbytes accelerate
|
124 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
125 |
|
126 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
127 |
|
128 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
129 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
|
130 |
|
131 |
+
input_text = "Write me a poem about Machine Learning."
|
132 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
133 |
|
134 |
+
outputs = model.generate(**input_ids)
|
135 |
+
print(tokenizer.decode(outputs[0]))
|
136 |
+
```
|
137 |
|
|
|
138 |
|
139 |
+
#### Other optimizations
|
140 |
|
141 |
+
* _Flash Attention 2_
|
142 |
|
143 |
+
First make sure to install `flash-attn` in your environment `pip install flash-attn`
|
144 |
|
145 |
+
```diff
|
146 |
+
model = AutoModelForCausalLM.from_pretrained(
|
147 |
+
model_id,
|
148 |
+
torch_dtype=torch.float16,
|
149 |
+
+ attn_implementation="flash_attention_2"
|
150 |
+
).to(0)
|
151 |
+
```
|
152 |
|
153 |
+
### Inputs and outputs
|
154 |
|
155 |
+
* **Input:** Text string, such as a question, a prompt, or a document to be
|
156 |
+
summarized.
|
157 |
+
* **Output:** Generated English-language text in response to the input, such
|
158 |
+
as an answer to a question, or a summary of a document.
|
159 |
|
160 |
+
## Evaluations
|
161 |
|
162 |
+
In progress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
## GGUF + iMatrix
|
165 |
|
166 |
+
In progress
|