macadeliccc commited on
Commit
947c20e
·
verified ·
1 Parent(s): 7b3a1b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -142
README.md CHANGED
@@ -1,201 +1,166 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
75
 
76
- ## Training Details
 
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
87
 
88
- #### Preprocessing [optional]
 
89
 
90
- [More Information Needed]
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
 
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
 
 
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
 
 
1
  ---
2
+ dataset: Thermostatic/flowers
3
+ license: other
4
+ license_name: gemma-terms-of-use
5
+ license_link: https://ai.google.dev/gemma/terms
6
  ---
7
 
8
+ # Gemma Orchid 7b
9
 
10
+ <div align="center">
11
 
12
+ ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/7pqiroePJW0WWm6JxwBoO.webp)
13
 
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ </div>
16
 
17
+ This model is the second checkpoint of a future project. Its capable of function calling as well as having a strong base in communicational skills.
18
 
19
+ This model has been finetuned on roughly 80k samples so far.
20
 
21
+ # Training
22
 
23
+ + Time to complete: ~20 hours
24
+ + Datasets: Thermostatic/flowers, Intel/orca_dpo_pairs, jondurbin/truthy-dpo-v0.1
25
+ + Cost: ~$20 in H100 hours
26
+ + Evaluation loss: 0.69
27
+ + Method: LoRa
28
+ + Prompt Format: ChatML
29
 
30
+ Thermostatic/flowers is a blend of open source model generations formatted in ShareGPT. It also includes all of capybara.
 
 
 
 
 
 
31
 
32
+ #### Running the model on a CPU
33
 
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM
36
 
37
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
38
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
 
39
 
40
+ input_text = "Write me a poem about Machine Learning."
41
+ input_ids = tokenizer(input_text, return_tensors="pt")
42
 
43
+ outputs = model.generate(**input_ids)
44
+ print(tokenizer.decode(outputs[0]))
45
+ ```
46
 
 
47
 
48
+ #### Running the model on a single / multi GPU
49
 
 
50
 
51
+ ```python
52
+ # pip install accelerate
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
 
55
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
56
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto")
57
 
58
+ input_text = "Write me a poem about Machine Learning."
59
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
60
 
61
+ outputs = model.generate(**input_ids)
62
+ print(tokenizer.decode(outputs[0]))
63
+ ```
64
 
 
65
 
66
+ #### Running the model on a GPU using different precisions
67
 
68
+ * _Using `torch.float16`_
69
 
70
+ ```python
71
+ # pip install accelerate
72
+ from transformers import AutoTokenizer, AutoModelForCausalLM
73
 
74
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
75
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.float16)
76
 
77
+ input_text = "Write me a poem about Machine Learning."
78
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
79
 
80
+ outputs = model.generate(**input_ids)
81
+ print(tokenizer.decode(outputs[0]))
82
+ ```
83
 
84
+ * _Using `torch.bfloat16`_
85
 
86
+ ```python
87
+ # pip install accelerate
88
+ from transformers import AutoTokenizer, AutoModelForCausalLM
89
 
90
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
91
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.bfloat16)
92
 
93
+ input_text = "Write me a poem about Machine Learning."
94
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
95
 
96
+ outputs = model.generate(**input_ids)
97
+ print(tokenizer.decode(outputs[0]))
98
+ ```
99
 
100
+ #### Quantized Versions through `bitsandbytes`
101
 
102
+ * _Using 8-bit precision (int8)_
103
 
104
+ ```python
105
+ # pip install bitsandbytes accelerate
106
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
107
 
108
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
109
 
110
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
111
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
112
 
113
+ input_text = "Write me a poem about Machine Learning."
114
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
115
 
116
+ outputs = model.generate(**input_ids)
117
+ print(tokenizer.decode(outputs[0]))
118
+ ```
119
 
120
+ * _Using 4-bit precision_
121
 
122
+ ```python
123
+ # pip install bitsandbytes accelerate
124
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
125
 
126
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
127
 
128
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
129
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
130
 
131
+ input_text = "Write me a poem about Machine Learning."
132
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
133
 
134
+ outputs = model.generate(**input_ids)
135
+ print(tokenizer.decode(outputs[0]))
136
+ ```
137
 
 
138
 
139
+ #### Other optimizations
140
 
141
+ * _Flash Attention 2_
142
 
143
+ First make sure to install `flash-attn` in your environment `pip install flash-attn`
144
 
145
+ ```diff
146
+ model = AutoModelForCausalLM.from_pretrained(
147
+ model_id,
148
+ torch_dtype=torch.float16,
149
+ + attn_implementation="flash_attention_2"
150
+ ).to(0)
151
+ ```
152
 
153
+ ### Inputs and outputs
154
 
155
+ * **Input:** Text string, such as a question, a prompt, or a document to be
156
+ summarized.
157
+ * **Output:** Generated English-language text in response to the input, such
158
+ as an answer to a question, or a summary of a document.
159
 
160
+ ## Evaluations
161
 
162
+ In progress
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
+ ## GGUF + iMatrix
165
 
166
+ In progress