macadeliccc
commited on
Commit
•
2a74d95
1
Parent(s):
97061bc
Update README.md
Browse files
README.md
CHANGED
@@ -51,87 +51,46 @@ Please give ideas and a detailed plan about how to assemble and train an army of
|
|
51 |
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
|
52 |
|
53 |
```python
|
54 |
-
|
55 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
|
57 |
-
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
|
59 |
-
model = AutoModelForCausalLM.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
|
60 |
-
|
61 |
-
# Define a function to generate responses with adjustable hyperparameters
|
62 |
-
def generate_response(messages, max_length=50, num_return_sequences=1, temperature=1.0, top_k=50, top_p=1.0):
|
63 |
"""
|
64 |
-
Generate a response from the model based on the input
|
65 |
|
66 |
Args:
|
67 |
-
|
68 |
-
max_length (int): Maximum length of the model's response.
|
69 |
-
num_return_sequences (int): Number of response sequences to generate.
|
70 |
-
temperature (float): Sampling temperature for model generation.
|
71 |
-
top_k (int): The number of highest probability vocabulary tokens to keep for top-k filtering.
|
72 |
-
top_p (float): If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
73 |
|
74 |
Returns:
|
75 |
str: The generated response from the model.
|
76 |
"""
|
77 |
-
#
|
78 |
-
|
79 |
|
80 |
-
# Generate
|
81 |
-
|
82 |
-
max_length=max_length,
|
83 |
-
num_return_sequences=num_return_sequences,
|
84 |
-
temperature=temperature,
|
85 |
-
top_k=top_k,
|
86 |
-
top_p=top_p)
|
87 |
|
88 |
# Decode the generated tokens to a string
|
89 |
-
response = tokenizer.decode(
|
90 |
-
|
91 |
return response
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
# Generate and print
|
100 |
-
|
101 |
-
print("
|
102 |
```
|
103 |
|
104 |
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
|
105 |
|
106 |
## Eval
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
111 |
-
|----------|-------|------|-----:|--------|-----:|---|-----:|
|
112 |
-
|arc_easy |Yaml |none | 0|acc |0.8413|± |0.0075|
|
113 |
-
| | |none | 0|acc_norm|0.8056|± |0.0081|
|
114 |
-
|boolq |Yaml |none | 0|acc |0.8694|± |0.0059|
|
115 |
-
|hellaswag |Yaml |none | 0|acc |0.6484|± |0.0048|
|
116 |
-
| | |none | 0|acc_norm|0.8354|± |0.0037|
|
117 |
-
|openbookqa|Yaml |none | 0|acc |0.3500|± |0.0214|
|
118 |
-
| | |none | 0|acc_norm|0.4660|± |0.0223|
|
119 |
-
|piqa |Yaml |none | 0|acc |0.8210|± |0.0089|
|
120 |
-
| | |none | 0|acc_norm|0.8303|± |0.0088|
|
121 |
-
|winogrande|Yaml |none | 0|acc |0.7577|± |0.0120|
|
122 |
-
|
123 |
-
**4-bit (bnb)**
|
124 |
-
|
125 |
-
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
126 |
-
|----------|-------|------|-----:|--------|-----:|---|-----:|
|
127 |
-
|boolq |Yaml |none | 0|acc |0.8700|± |0.0059|
|
128 |
-
|hellaswag |Yaml |none | 0|acc |0.6356|± |0.0048|
|
129 |
-
| | |none | 0|acc_norm|0.8270|± |0.0038|
|
130 |
-
|openbookqa|Yaml |none | 0|acc |0.3320|± |0.0211|
|
131 |
-
| | |none | 0|acc_norm|0.4620|± |0.0223|
|
132 |
-
|piqa |Yaml |none | 0|acc |0.8123|± |0.0091|
|
133 |
-
| | |none | 0|acc_norm|0.8259|± |0.0088|
|
134 |
-
|winogrande|Yaml |none | 0|acc |0.7490|± |0.0122|
|
135 |
|
136 |
|
137 |
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
|
|
|
51 |
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
|
52 |
|
53 |
```python
|
54 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
55 |
|
56 |
+
def generate_response(prompt):
|
|
|
|
|
|
|
|
|
|
|
57 |
"""
|
58 |
+
Generate a response from the model based on the input prompt.
|
59 |
|
60 |
Args:
|
61 |
+
prompt (str): Prompt for the model.
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
Returns:
|
64 |
str: The generated response from the model.
|
65 |
"""
|
66 |
+
# Tokenize the input prompt
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
68 |
|
69 |
+
# Generate output tokens
|
70 |
+
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Decode the generated tokens to a string
|
73 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
74 |
+
|
75 |
return response
|
76 |
|
77 |
+
# Load the model and tokenizer
|
78 |
+
model_id = "macadeliccc/piccolo-2x7b"
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
80 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
|
81 |
+
|
82 |
+
prompt = "Write a quicksort algorithm in python"
|
83 |
|
84 |
+
# Generate and print responses for each language
|
85 |
+
print("Response:")
|
86 |
+
print(generate_response(prompt), "\n")
|
87 |
```
|
88 |
|
89 |
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
|
90 |
|
91 |
## Eval
|
92 |
|
93 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
|