macadeliccc commited on
Commit
95a55ce
1 Parent(s): 543c7da

add code example

Browse files
Files changed (1) hide show
  1. README.md +48 -2
README.md CHANGED
@@ -12,7 +12,7 @@ This model is a medium-sized MoE implementation based on [cognitivecomputations/
12
 
13
  A 2x7b configuration offers better performance than a standard 7b model even if loaded in 4 bit.
14
 
15
- If this 2x7b model is loaded in 4 bit the hellaswag score is .8260 which is higher than the base model achieves on its own in full precision.
16
 
17
  ## Prompt Format
18
 
@@ -37,12 +37,44 @@ Please give ideas and a detailed plan about how to assemble and train an army of
37
  <|im_start|>assistant
38
  ```
39
 
 
 
 
 
 
40
  ## Code Example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- TODO
 
 
 
 
 
 
 
 
43
 
44
  ## Eval
45
 
 
 
46
  | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
47
  |----------|-------|------|-----:|--------|-----:|---|-----:|
48
  |arc_easy |Yaml |none | 0|acc |0.8413|± |0.0075|
@@ -56,6 +88,20 @@ TODO
56
  | | |none | 0|acc_norm|0.8303|± |0.0088|
57
  |winogrande|Yaml |none | 0|acc |0.7577|± |0.0120|
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  link to evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
60
 
61
  ## Citations
 
12
 
13
  A 2x7b configuration offers better performance than a standard 7b model even if loaded in 4 bit.
14
 
15
+ If this 2x7b model is loaded in 4 bit the hellaswag score is .8270 which is higher than the base model achieves on its own in full precision.
16
 
17
  ## Prompt Format
18
 
 
37
  <|im_start|>assistant
38
  ```
39
 
40
+ ## Models Merged
41
+
42
+ + teknium/OpenHermes-2.5-Mistral-7B
43
+ + cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
44
+
45
  ## Code Example
46
+ Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
47
+
48
+ ```python
49
+ from transformers import AutoTokenizer, AutoModelForCausalLM
50
+
51
+ # Load tokenizer and model
52
+ tokenizer = AutoTokenizer.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
53
+ model = AutoModelForCausalLM.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo")
54
+ # model = AutoModelForCausalLM.from_pretrained("macadeliccc/laser-dolphin-mixtral-2x7b-dpo", load_in_4bit=True)
55
+ # Define the chat messages
56
+ messages = [
57
+ {"role": "system", "content": "You are Dolphin, an AI assistant"},
58
+ {"role": "user", "content": "Hello, who are you?"}
59
+ ]
60
+
61
+ # Apply chat template to input messages
62
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
63
 
64
+ # Generate a response
65
+ output = model.generate(**gen_input)
66
+
67
+ # Decode the generated tokens to a string
68
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
69
+
70
+ # Print the response
71
+ print("Response:", response)
72
+ ```
73
 
74
  ## Eval
75
 
76
+ **Full Precision**
77
+
78
  | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
79
  |----------|-------|------|-----:|--------|-----:|---|-----:|
80
  |arc_easy |Yaml |none | 0|acc |0.8413|± |0.0075|
 
88
  | | |none | 0|acc_norm|0.8303|± |0.0088|
89
  |winogrande|Yaml |none | 0|acc |0.7577|± |0.0120|
90
 
91
+ **4-bit (bnb)**
92
+
93
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
94
+ |----------|-------|------|-----:|--------|-----:|---|-----:|
95
+ |boolq |Yaml |none | 0|acc |0.8700|± |0.0059|
96
+ |hellaswag |Yaml |none | 0|acc |0.6356|± |0.0048|
97
+ | | |none | 0|acc_norm|0.8270|± |0.0038|
98
+ |openbookqa|Yaml |none | 0|acc |0.3320|± |0.0211|
99
+ | | |none | 0|acc_norm|0.4620|± |0.0223|
100
+ |piqa |Yaml |none | 0|acc |0.8123|± |0.0091|
101
+ | | |none | 0|acc_norm|0.8259|± |0.0088|
102
+ |winogrande|Yaml |none | 0|acc |0.7490|± |0.0122|
103
+
104
+
105
  link to evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
106
 
107
  ## Citations