File size: 6,860 Bytes
1da0eed
 
 
2a40ac9
1da0eed
610b890
 
a2d7c01
1da0eed
 
a2d7c01
 
 
2a40ac9
 
 
1da0eed
610b890
1da0eed
d0926a1
1f345af
a69b33c
 
7d2b123
 
1da0eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69b33c
 
1da0eed
 
 
610b890
1da0eed
 
 
6c01ccb
1da0eed
 
 
d0926a1
 
 
1da0eed
 
 
610b890
 
 
9f2ff65
1da0eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a40ac9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
library_name: transformers
license: llama3.2
license_link: https://huggingface.co/meta-llama/Llama-3.2-3B/blob/main/LICENSE.txt
base_model: meta-llama/Llama-3.2-3B
datasets:
- macadeliccc/US-SupremeCourtVerdicts
- macadeliccc/US-FederalLaws
tags:
- generated_from_trainer
- llama-3
- spectrum
- axolotl
language:
- en
pipeline_tag: text-generation
---
# Magistrate 3.2 3B

Continued pretraining applied to  [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) using no synthetic legal data.  ~250M tokens.

The model achieves the following results on the evaluation set:
- Loss: 0.6802

Instruct version is available [here]()

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Llama-3.2-3B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: json
    data_files: "data/amendments_with_content_converted.json"
    type: completion
  - path: json
    data_files: "data/federal_rules_converted.json"
    type: completion
  - path: json
    data_files: "data/cornell_legal_encyclopedias_converted.json"
    type: completion
  - path: json
    data_files: "data/pocket_guide_for_judges_converted.json"
    type: completion
  - path: json
    data_files: "data/us_federal_code.json"
    type: completion
  - path: json
    data_files: "data/us_supreme_court_summaries_converted.json"
    type: completion
  - path: json
    data_files: "data/us_supreme_court_converted.json"
    type: completion
  - path: json
    data_files: "data/ucfr.json"
    type: completion
  - path: json
    data_files: "data/map-code-filtered.json"
    type: completion
  
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

# adapter: lora
# lora_model_dir:
# lora_r: 128
# lora_alpha: 32
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:
# lora_modules_to_save:
#   - embed_tokens
#   - lm_head

unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.0.mlp.down_proj
- model.layers.1.mlp.down_proj
- model.layers.17.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.18.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.16.mlp.down_proj
- model.layers.15.mlp.down_proj
- model.layers.13.mlp.down_proj
# mlp.gate_proj layers
- model.layers.0.mlp.gate_proj
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.22.mlp.gate_proj
- model.layers.21.mlp.gate_proj
- model.layers.20.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.19.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.18.mlp.gate_proj
- model.layers.17.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.24.mlp.gate_proj
# mlp.up_proj layers
- model.layers.4.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.14.mlp.up_proj
- model.layers.13.mlp.up_proj
- model.layers.11.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.1.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.12.mlp.up_proj
# self_attn.k_proj layers
- model.layers.25.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.17.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.18.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.15.self_attn.k_proj
- model.layers.10.self_attn.k_proj
- model.layers.6.self_attn.k_proj
- model.layers.5.self_attn.k_proj
# self_attn.o_proj layers

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit

# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 0 # no noisy embedding to ensure maximal memorization 


lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 690
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>




## Model description

This is a base model trained on US Supreme Court proceedings, US federal code and regulations.

## Intended uses & limitations

This model is intended for research purposes. You are liable for all model outputs.

## Training and evaluation data

The training data consists of US Supreme Court verdicts, federal regulations, laws and treaties.

Some other resources have been included from institutions like CLL to fill in the gaps in knowledge for industry jargon. 

## Training procedure

Spectrum top 35% fine tune. Thanks to the cognitive computations team for the work done on spectrum.

Methodology based on Cohere's paper: [To Code, or Not To Code? Exploring Impact of Code in Pre-training](https://arxiv.org/abs/2408.10914)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 690
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3589        | 0.0004 | 1    | 1.5640          |
| 0.9936        | 0.4984 | 1154 | 0.9440          |
| 0.8384        | 0.9968 | 2308 | 0.8392          |
| 0.8226        | 1.4963 | 3462 | 0.7802          |
| 0.6568        | 1.9949 | 4616 | 0.7059          |
| 0.5163        | 2.4923 | 5770 | 0.6886          |
| 0.492         | 2.9922 | 6924 | 0.6802          |


### Framework versions

- Transformers 4.45.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0