--- license: apache-2.0 base_model: microsoft/conditional-detr-resnet-50 tags: - generated_from_trainer model-index: - name: queue_detection results: [] --- # queue_detection This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4686 - Map: 0.2556 - Map 50: 0.4262 - Map 75: 0.2687 - Map Small: -1.0 - Map Medium: 0.0006 - Map Large: 0.2572 - Mar 1: 0.2033 - Mar 10: 0.561 - Mar 100: 0.715 - Mar Small: -1.0 - Mar Medium: 0.0036 - Mar Large: 0.7212 - Map Cashier: 0.3957 - Mar 100 Cashier: 0.812 - Map Cx: 0.1154 - Mar 100 Cx: 0.618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Cashier | Mar 100 Cashier | Map Cx | Mar 100 Cx | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-----------:|:---------------:|:------:|:----------:| | No log | 1.0 | 218 | 1.6672 | 0.1422 | 0.2781 | 0.1441 | -1.0 | 0.0 | 0.1427 | 0.166 | 0.421 | 0.6116 | -1.0 | 0.0 | 0.6154 | 0.2345 | 0.7322 | 0.05 | 0.4911 | | No log | 2.0 | 436 | 1.4686 | 0.2556 | 0.4262 | 0.2687 | -1.0 | 0.0006 | 0.2572 | 0.2033 | 0.561 | 0.715 | -1.0 | 0.0036 | 0.7212 | 0.3957 | 0.812 | 0.1154 | 0.618 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cpu - Datasets 2.20.0 - Tokenizers 0.19.1