File size: 2,727 Bytes
32f0d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41db17
 
 
32f0d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ade13e
32f0d5a
 
 
 
 
 
30d2e11
c41db17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f0d5a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
tags:
- generated_from_keras_callback
model-index:
- name: madatnlp/ke-t5-scratch
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# madatnlp/ke-t5-scratch

This model is a fine-tuned version of [madatnlp/ke-t5-math-py](https://huggingface.co/madatnlp/ke-t5-math-py) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4760
- Validation Loss: 0.7360
- Epoch: 36

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.2751     | 2.1074          | 0     |
| 2.2716     | 1.7945          | 1     |
| 1.8889     | 1.5726          | 2     |
| 1.6760     | 1.3722          | 3     |
| 1.5021     | 1.3280          | 4     |
| 1.4369     | 1.2523          | 5     |
| 1.3352     | 1.0619          | 6     |
| 1.2749     | 1.1156          | 7     |
| 1.2170     | 1.0452          | 8     |
| 1.1713     | 1.0596          | 9     |
| 1.1410     | 1.0080          | 10    |
| 1.0884     | 1.0213          | 11    |
| 1.0508     | 0.9223          | 12    |
| 0.9933     | 0.9353          | 13    |
| 0.9871     | 0.8749          | 14    |
| 0.9251     | 0.9173          | 15    |
| 0.9282     | 0.8620          | 16    |
| 0.8849     | 0.8093          | 17    |
| 0.8613     | 0.7823          | 18    |
| 0.8322     | 0.8016          | 19    |
| 0.8070     | 0.8844          | 20    |
| 0.7737     | 0.7635          | 21    |
| 0.7465     | 0.8440          | 22    |
| 0.7178     | 0.7958          | 23    |
| 0.7036     | 0.7739          | 24    |
| 0.6813     | 0.7347          | 25    |
| 0.6597     | 0.7545          | 26    |
| 0.6427     | 0.7394          | 27    |
| 0.6154     | 0.7212          | 28    |
| 0.5892     | 0.7653          | 29    |
| 0.5696     | 0.7073          | 30    |
| 0.5644     | 0.6977          | 31    |
| 0.5307     | 0.6977          | 32    |
| 0.5159     | 0.7736          | 33    |
| 0.5131     | 0.8138          | 34    |
| 0.4812     | 0.7623          | 35    |
| 0.4760     | 0.7360          | 36    |


### Framework versions

- Transformers 4.18.0
- TensorFlow 2.8.0
- Datasets 2.1.0
- Tokenizers 0.12.1