GGUF
English
Inference Endpoints
maddes8cht commited on
Commit
9f70e49
ยท
1 Parent(s): fcd739c

"Update README.md"

Browse files
Files changed (1) hide show
  1. README.md +251 -2
README.md CHANGED
@@ -19,10 +19,259 @@ widget:
19
  example_title: "Trendy Jobs"
20
  license: apache-2.0
21
  ---
22
- ![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)
 
23
  ## I am still building the structure of these descriptions.
24
- These will carry increasingly more content to help find the best models for a purpose.
 
 
 
 
 
25
 
26
  Tiiuae-Falcon 7B instruct is the original instruction following Falcon model from Tiiuae, converted to gguf format.
27
 
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  example_title: "Trendy Jobs"
20
  license: apache-2.0
21
  ---
22
+ [![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]()
23
+
24
  ## I am still building the structure of these descriptions.
25
+
26
+ These will contain increasingly more content to help find the best models for a purpose.
27
+
28
+ # falcon-7b-instruct - GGUF
29
+ - Model creator: [tiiuae](https://huggingface.co/tiiuae)
30
+ - Original model: [falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)
31
 
32
  Tiiuae-Falcon 7B instruct is the original instruction following Falcon model from Tiiuae, converted to gguf format.
33
 
34
 
35
+
36
+ # About GGUF format
37
+
38
+ `gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
39
+ A growing list of Software is using it and can therefore use this model.
40
+ The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
41
+
42
+ # Quantization variants
43
+
44
+ There is a bunch of quantized files available. How to choose the best for you:
45
+
46
+ # legacy quants
47
+
48
+ Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
49
+ Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
50
+ Falcon 7B models cannot be quantized to K-quants.
51
+
52
+ # K-quants
53
+
54
+ K-quants are based on the idea that the quantization of certain parts affects the quality in different ways. If you quantize certain parts more and others less, you get a more powerful model with the same file size, or a smaller file size and lower memory load with comparable performance.
55
+ So, if possible, use K-quants.
56
+ With a Q6_K you should find it really hard to find a quality difference to the original model - ask your model two times the same question and you may encounter bigger quality differences.
57
+
58
+
59
+
60
+ # Original Model Card:
61
+ # โœจ Falcon-7B-Instruct
62
+
63
+ **Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the Apache 2.0 license.**
64
+
65
+ *Paper coming soon ๐Ÿ˜Š.*
66
+
67
+ ๐Ÿค— To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
68
+
69
+ ## Why use Falcon-7B-Instruct?
70
+
71
+ * **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
72
+ * **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
73
+ * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
74
+
75
+ ๐Ÿ’ฌ **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
76
+
77
+ ๐Ÿ”ฅ **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!
78
+
79
+ ```python
80
+ from transformers import AutoTokenizer, AutoModelForCausalLM
81
+ import transformers
82
+ import torch
83
+
84
+ model = "tiiuae/falcon-7b-instruct"
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained(model)
87
+ pipeline = transformers.pipeline(
88
+ "text-generation",
89
+ model=model,
90
+ tokenizer=tokenizer,
91
+ torch_dtype=torch.bfloat16,
92
+ trust_remote_code=True,
93
+ device_map="auto",
94
+ )
95
+ sequences = pipeline(
96
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
97
+ max_length=200,
98
+ do_sample=True,
99
+ top_k=10,
100
+ num_return_sequences=1,
101
+ eos_token_id=tokenizer.eos_token_id,
102
+ )
103
+ for seq in sequences:
104
+ print(f"Result: {seq['generated_text']}")
105
+
106
+ ```
107
+
108
+ ๐Ÿ’ฅ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
109
+
110
+ For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
111
+
112
+ You will need **at least 16GB of memory** to swiftly run inference with Falcon-7B-Instruct.
113
+
114
+
115
+ # Model Card for Falcon-7B-Instruct
116
+
117
+ ## Model Details
118
+
119
+ ### Model Description
120
+
121
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae);
122
+ - **Model type:** Causal decoder-only;
123
+ - **Language(s) (NLP):** English and French;
124
+ - **License:** Apache 2.0;
125
+ - **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
126
+
127
+ ### Model Source
128
+
129
+ - **Paper:** *coming soon*.
130
+
131
+ ## Uses
132
+
133
+ ### Direct Use
134
+
135
+ Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.
136
+
137
+ ### Out-of-Scope Use
138
+
139
+ Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
140
+
141
+ ## Bias, Risks, and Limitations
142
+
143
+ Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
144
+
145
+ ### Recommendations
146
+
147
+ We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.
148
+
149
+ ## How to Get Started with the Model
150
+
151
+
152
+ ```python
153
+ from transformers import AutoTokenizer, AutoModelForCausalLM
154
+ import transformers
155
+ import torch
156
+
157
+ model = "tiiuae/falcon-7b-instruct"
158
+
159
+ tokenizer = AutoTokenizer.from_pretrained(model)
160
+ pipeline = transformers.pipeline(
161
+ "text-generation",
162
+ model=model,
163
+ tokenizer=tokenizer,
164
+ torch_dtype=torch.bfloat16,
165
+ trust_remote_code=True,
166
+ device_map="auto",
167
+ )
168
+ sequences = pipeline(
169
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
170
+ max_length=200,
171
+ do_sample=True,
172
+ top_k=10,
173
+ num_return_sequences=1,
174
+ eos_token_id=tokenizer.eos_token_id,
175
+ )
176
+ for seq in sequences:
177
+ print(f"Result: {seq['generated_text']}")
178
+
179
+ ```
180
+
181
+ ## Training Details
182
+
183
+ ### Training Data
184
+
185
+ Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.
186
+
187
+ | **Data source** | **Fraction** | **Tokens** | **Description** |
188
+ |--------------------|--------------|------------|-----------------------------------|
189
+ | [Bai ze](https://github.com/project-baize/baize-chatbot) | 65% | 164M | chat |
190
+ | [GPT4All](https://github.com/nomic-ai/gpt4all) | 25% | 62M | instruct |
191
+ | [GPTeacher](https://github.com/teknium1/GPTeacher) | 5% | 11M | instruct |
192
+ | [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5% | 13M | massive web crawl |
193
+
194
+
195
+ The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
196
+
197
+
198
+ ## Evaluation
199
+
200
+ *Paper coming soon.*
201
+
202
+ See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
203
+
204
+ Note that this model variant is not optimized for NLP benchmarks.
205
+
206
+
207
+ ## Technical Specifications
208
+
209
+ For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).
210
+
211
+ ### Model Architecture and Objective
212
+
213
+ Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
214
+
215
+ The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
216
+
217
+ * **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
218
+ * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
219
+ * **Decoder-block:** parallel attention/MLP with a single layer norm.
220
+
221
+ | **Hyperparameter** | **Value** | **Comment** |
222
+ |--------------------|-----------|----------------------------------------|
223
+ | Layers | 32 | |
224
+ | `d_model` | 4544 | Increased to compensate for multiquery |
225
+ | `head_dim` | 64 | Reduced to optimise for FlashAttention |
226
+ | Vocabulary | 65024 | |
227
+ | Sequence length | 2048 | |
228
+
229
+ ### Compute Infrastructure
230
+
231
+ #### Hardware
232
+
233
+ Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.
234
+
235
+ #### Software
236
+
237
+ Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
238
+
239
+
240
+ ## Citation
241
+
242
+ *Paper coming soon* ๐Ÿ˜Š. In the meanwhile, you can use the following information to cite:
243
+ ```
244
+ @article{falcon40b,
245
+ title={{Falcon-40B}: an open large language model with state-of-the-art performance},
246
+ author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
247
+ year={2023}
248
+ }
249
+ ```
250
+
251
+ To learn more about the pretraining dataset, see the ๐Ÿ““ [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
252
+
253
+ ```
254
+ @article{refinedweb,
255
+ title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
256
+ author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
257
+ journal={arXiv preprint arXiv:2306.01116},
258
+ eprint={2306.01116},
259
+ eprinttype = {arXiv},
260
+ url={https://arxiv.org/abs/2306.01116},
261
+ year={2023}
262
+ }
263
+ ```
264
+
265
+
266
+ ## License
267
+
268
+ Falcon-7B-Instruct is made available under the Apache 2.0 license.
269
+
270
+ ## Contact
271
+ [email protected]<center>
272
+ [![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io)
273
+ [![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911)
274
+ [![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht)
275
+ [![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht)
276
+ [![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)
277
+ </center>