madoe001 commited on
Commit
3870f8b
·
1 Parent(s): fb5ab76

Whoohoo my first RF-Solution for lunar-landing

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 243.98 +/- 17.03
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 271.45 +/- 25.19
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9287235b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9287235c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9287235ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9287235d30>", "_build": "<function ActorCriticPolicy._build at 0x7f9287235dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9287235e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9287235ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9287235f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9287237040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92872370d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9287237160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92872371f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9287238180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679835283364299672, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMYyTL47OKK8Hnj/OgQFYTmDow4+Nj8kugAAgD8AAIA/AH4wPApHFz7+8Mk9d9EfvnpR3zw4+8Q8AAAAAAAAAACKzVK+3LRqvDqIe7pffYG4JXXPPQ2FmDkAAIA/AACAP3paNz4u0Jy8CrnpO+vBebphLhS+vmxGuwAAgD8AAIA/jSa/Pfyd8j4HKQe9wlyZvtRuMTz93SQ8AAAAAAAAAAAAoBG+FGuCO99imj3n+CK+lxO8O9clPT0AAAAAAAAAAL2Xgj5HjwM+Zgk3vnONwL1JnT68D/ULvQAAAAAAAAAAxkZhvo5ukz+t962+B7Qlv3vsFr6RHJu9AAAAAAAAAAC51gO/4RhfPn4DiT0s4zy+dL65vXkgmDwAAAAAAAAAAGYpZj3jk7A/3CYrP/eriL6hS+K7OJL6PQAAAAAAAAAAAkWGvpx1NbxRT6M7TtUuvLM8qz277WY8AAAAAAAAAACzHKo9EqaRP2LBwz7vXie/UAWEPeymkT0AAAAAAAAAAKYLTD6bYam88WyvO1YzGLoyLRe+88nvugAAgD8AAIA/IlWwvpzhPz7ScFY+KxYzvu0KiLqoD4k8AAAAAAAAAACTXGc+sYsaP8MP3j261LO+6gz4PZt/1L0AAAAAAAAAAFoUIT6c5328Oox5PdK3F7xWP969qGP0vAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFaqbiz/KbECUhpRSlIwBbJRL+owBdJRHQJutWB4D9wZ1fZQoaAZoCWgPQwhFoPoHkcpvQJSGlFKUaBVL92gWR0Cbripda+vhdX2UKGgGaAloD0MIdxA7U6hJcECUhpRSlGgVTSEBaBZHQJuwZ8Aq/dt1fZQoaAZoCWgPQwjUfJV87L9vQJSGlFKUaBVNAAFoFkdAm7CFxsEaEXV9lChoBmgJaA9DCPBrJAkC4XFAlIaUUpRoFUv9aBZHQJuw8G8mKIl1fZQoaAZoCWgPQwgYesTouXBxQJSGlFKUaBVL9mgWR0CbsjRsMy8BdX2UKGgGaAloD0MILskBu1qMcECUhpRSlGgVS/NoFkdAm7OfYvnKXHV9lChoBmgJaA9DCAWnPpA8GWJAlIaUUpRoFU3oA2gWR0Cbs+9oexOddX2UKGgGaAloD0MI3jtqTAjPcECUhpRSlGgVTRoBaBZHQJu0ID+zdDZ1fZQoaAZoCWgPQwjzkv/Jn1dxQJSGlFKUaBVNGQFoFkdAm7QhPO6d2HV9lChoBmgJaA9DCOV620yFGW1AlIaUUpRoFU0TAWgWR0CbtnWo3rD7dX2UKGgGaAloD0MI6Qsh5z3jcECUhpRSlGgVS/hoFkdAm7aGy1NQCXV9lChoBmgJaA9DCPRr66d/E25AlIaUUpRoFUv5aBZHQJu2z7YTTOR1fZQoaAZoCWgPQwgGDmjpitNuQJSGlFKUaBVNCgFoFkdAm7faUJOWSnV9lChoBmgJaA9DCO2ePCzU/HBAlIaUUpRoFUv4aBZHQJwi4M6RyOt1fZQoaAZoCWgPQwj9MEJ49MpwQJSGlFKUaBVNCQFoFkdAnCMxMWXTmXV9lChoBmgJaA9DCCaPp+UHUm1AlIaUUpRoFU0WAWgWR0CcI/mwaBI4dX2UKGgGaAloD0MIkNeDSXEQb0CUhpRSlGgVTQ0BaBZHQJwlSB4D9wZ1fZQoaAZoCWgPQwhnKO54kzpvQJSGlFKUaBVNAAFoFkdAnCaO9rXUY3V9lChoBmgJaA9DCE8+PbZlY21AlIaUUpRoFU0VAWgWR0CcJw2gFotddX2UKGgGaAloD0MIYFeTp6wfb0CUhpRSlGgVS/ZoFkdAnCkiUPhAGHV9lChoBmgJaA9DCEykNJvH9GtAlIaUUpRoFUv9aBZHQJwpemzjWCp1fZQoaAZoCWgPQwgk7rH0IVZhQJSGlFKUaBVN6ANoFkdAnCoi0KJEY3V9lChoBmgJaA9DCNV2E3zTBnFAlIaUUpRoFUvwaBZHQJwqn3YcvM91fZQoaAZoCWgPQwjekbHaPA5wQJSGlFKUaBVL+WgWR0CcLD1VYISldX2UKGgGaAloD0MIOgg6WhVWcECUhpRSlGgVTQUBaBZHQJws5gE2YOV1fZQoaAZoCWgPQwjTakjcY7xsQJSGlFKUaBVNBgFoFkdAnC2DwlSjxnV9lChoBmgJaA9DCDjXMEPjul1AlIaUUpRoFU3oA2gWR0CcLogrpaA4dX2UKGgGaAloD0MIsvM2Nns9ckCUhpRSlGgVTQMBaBZHQJwu1ggHNX51fZQoaAZoCWgPQwhpHOp3oUJxQJSGlFKUaBVNiAFoFkdAnC77wOOKfnV9lChoBmgJaA9DCN2ZCYbzTW5AlIaUUpRoFU0OAWgWR0CcMFh37k4ndX2UKGgGaAloD0MIOnXls/x/cUCUhpRSlGgVTRcBaBZHQJwxGza9K291fZQoaAZoCWgPQwi+FB40u6RCQJSGlFKUaBVL72gWR0CcMbB4Uvf1dX2UKGgGaAloD0MI5ZmXw24AYECUhpRSlGgVTegDaBZHQJwxt3Roh6l1fZQoaAZoCWgPQwi/1M+bitZuQJSGlFKUaBVL9GgWR0CcMhrHU+cIdX2UKGgGaAloD0MIISBfQsWscUCUhpRSlGgVTRwBaBZHQJw0Qm+j/Mp1fZQoaAZoCWgPQwjGMCdo0+pwQJSGlFKUaBVL8GgWR0CcNEgq3EyddX2UKGgGaAloD0MIbEJaY5BzcECUhpRSlGgVTTUBaBZHQJw0pSEUTL51fZQoaAZoCWgPQwh5lEp4gu1wQJSGlFKUaBVL7mgWR0CcNMdpItlJdX2UKGgGaAloD0MI46lHGlxPb0CUhpRSlGgVTR8BaBZHQJw27S4OMER1fZQoaAZoCWgPQwhivVErTFRsQJSGlFKUaBVNAwFoFkdAnDcya3I+4nV9lChoBmgJaA9DCMUbmUd+Fm5AlIaUUpRoFU0PAWgWR0CcN1MGorFwdX2UKGgGaAloD0MIkx6GVidlYECUhpRSlGgVTegDaBZHQJw3/crRSgp1fZQoaAZoCWgPQwhDrtSzIJwqwJSGlFKUaBVL12gWR0CcN/2Hck+pdX2UKGgGaAloD0MIJET5ghbFb0CUhpRSlGgVTQIBaBZHQJw4lWU8mrt1fZQoaAZoCWgPQwiJtmPqrvZwQJSGlFKUaBVL62gWR0CcOX88s+V1dX2UKGgGaAloD0MIJeZZSSuccUCUhpRSlGgVTSEBaBZHQJw64lE7W/d1fZQoaAZoCWgPQwhP6zao/Z9xQJSGlFKUaBVL+WgWR0CcPFDTjNpudX2UKGgGaAloD0MIvjEEAMfQbkCUhpRSlGgVTVABaBZHQJw8dPrOZ9d1fZQoaAZoCWgPQwjAzHfwExxwQJSGlFKUaBVL/WgWR0CcPHq0MPSVdX2UKGgGaAloD0MIeEXwv9XZcECUhpRSlGgVS/1oFkdAnDzU3XI2fnV9lChoBmgJaA9DCBXl0viFlW1AlIaUUpRoFUv9aBZHQJw89qdpZfV1fZQoaAZoCWgPQwhZ94+F6Ew/QJSGlFKUaBVLymgWR0CcPcDziCJ5dX2UKGgGaAloD0MIf0xr09iLXUCUhpRSlGgVTegDaBZHQJw/vBbfP5Z1fZQoaAZoCWgPQwhvn1VmSmFeQJSGlFKUaBVN6ANoFkdAnD+9X5nDi3V9lChoBmgJaA9DCGUaTS4GaHJAlIaUUpRoFU0ZAWgWR0CcP+2rXDm9dX2UKGgGaAloD0MIn1c89YhicUCUhpRSlGgVS/hoFkdAnD/n7k4m1XV9lChoBmgJaA9DCIXQQZdwF29AlIaUUpRoFU0VAWgWR0CcQAM+eOGTdX2UKGgGaAloD0MIpREz+zwjcUCUhpRSlGgVTSUBaBZHQJxA9BqsU7F1fZQoaAZoCWgPQwjYRdEDX/RwQJSGlFKUaBVNSwFoFkdAnEKH6l+Ey3V9lChoBmgJaA9DCA5qv7WTQ2xAlIaUUpRoFU19AmgWR0CcQrdK/VRUdX2UKGgGaAloD0MI6xotB3plcECUhpRSlGgVS/BoFkdAnEO1Y+0PYnV9lChoBmgJaA9DCBISaRt/RW9AlIaUUpRoFUvyaBZHQJxD4ujASFp1fZQoaAZoCWgPQwhg5jv4CddvQJSGlFKUaBVNOgFoFkdAnEQiYw7DEXV9lChoBmgJaA9DCFMlyt4ShXJAlIaUUpRoFU0sAWgWR0CcROth/iHZdX2UKGgGaAloD0MIJLn8h/SKcUCUhpRSlGgVTTMBaBZHQJxFNxVAAyV1fZQoaAZoCWgPQwgL73IR3/JsQJSGlFKUaBVNAgFoFkdAnEamjwhGIHV9lChoBmgJaA9DCM+G/DPDunBAlIaUUpRoFU1QAWgWR0CcRy9Ba9sadX2UKGgGaAloD0MIIoyfxr0XcECUhpRSlGgVTRkBaBZHQJxHhaQmu1Z1fZQoaAZoCWgPQwj/BYIAGW9xQJSGlFKUaBVNNAFoFkdAnEgV0xM363V9lChoBmgJaA9DCEGd8uhG0HBAlIaUUpRoFU0EAWgWR0CcSC2aDwpfdX2UKGgGaAloD0MIz9kCQmuqcECUhpRSlGgVS/NoFkdAnElJfdAPd3V9lChoBmgJaA9DCKTgKeRKRSxAlIaUUpRoFUvdaBZHQJxJ2H1vl2h1fZQoaAZoCWgPQwhr1a4JaVZxQJSGlFKUaBVNCwFoFkdAnE2Roh6jWXV9lChoBmgJaA9DCF2/YDfs+mxAlIaUUpRoFU0iAWgWR0CcTie1rqMWdX2UKGgGaAloD0MIo87cQ8Iwb0CUhpRSlGgVS/NoFkdAnE8DiKiwjnV9lChoBmgJaA9DCNRkxtsKvXFAlIaUUpRoFU2XAWgWR0CcUBKg7HQydX2UKGgGaAloD0MI0J1g/zWzcUCUhpRSlGgVS/doFkdAnFChm5DqnnV9lChoBmgJaA9DCFkV4Sajc2xAlIaUUpRoFUv6aBZHQJxU6x/ustF1fZQoaAZoCWgPQwgZj1IJj1hwQJSGlFKUaBVNIAFoFkdAnFYKJyhi9nV9lChoBmgJaA9DCBWPi2rRFXFAlIaUUpRoFU1nAWgWR0CcV84ZdfLLdX2UKGgGaAloD0MIXcKht/jnbkCUhpRSlGgVTQIBaBZHQJxbOS5iExt1fZQoaAZoCWgPQwiRR3AjZSZuQJSGlFKUaBVNDQFoFkdAnFydIXj2jHV9lChoBmgJaA9DCDUk7rG01HBAlIaUUpRoFUv0aBZHQJxdhuWKMvR1fZQoaAZoCWgPQwiR7Xw/NSxxQJSGlFKUaBVNLgFoFkdAnF9OCsfaH3V9lChoBmgJaA9DCHVZTGy+AWFAlIaUUpRoFU3oA2gWR0CcX5dMTN+tdX2UKGgGaAloD0MIAU9auGx8cECUhpRSlGgVTakCaBZHQJxhBNtZV4p1fZQoaAZoCWgPQwiwOQfPxOBwQJSGlFKUaBVL9WgWR0CcYoo11nuidX2UKGgGaAloD0MIXg8mxQcdcECUhpRSlGgVTQ4BaBZHQJxitt78ejp1fZQoaAZoCWgPQwh002acBmxiQJSGlFKUaBVN6ANoFkdAnGL+1rqMWHV9lChoBmgJaA9DCFrwoq8gC29AlIaUUpRoFUvyaBZHQJxlzpiZv1l1fZQoaAZoCWgPQwi6u86GfNBgQJSGlFKUaBVN6ANoFkdAnGdR7NSqEXV9lChoBmgJaA9DCEcCDTZ1iGFAlIaUUpRoFU3oA2gWR0CcZ3kzoEB9dX2UKGgGaAloD0MIqRH6mXqdIkCUhpRSlGgVS9hoFkdAnGgKnivPknV9lChoBmgJaA9DCAlQU8vW6G5AlIaUUpRoFU0EAWgWR0CcaBNMoMKDdX2UKGgGaAloD0MIUWwFTYsUckCUhpRSlGgVTUABaBZHQJxppr8BMi91fZQoaAZoCWgPQwjLSpNS0E9wQJSGlFKUaBVNPwNoFkdAnGrPrfLs8nV9lChoBmgJaA9DCH6Ojxan9nBAlIaUUpRoFU0TAWgWR0Cca0s3yZrpdX2UKGgGaAloD0MIfEeNCbGzYkCUhpRSlGgVTegDaBZHQJxsg7/4qPR1fZQoaAZoCWgPQwgWhzO/GhpwQJSGlFKUaBVNDgFoFkdAnGzronrpq3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff480828040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4808280d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff480828160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4808281f0>", "_build": "<function ActorCriticPolicy._build at 0x7ff480828280>", "forward": "<function ActorCriticPolicy.forward at 0x7ff480828310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff4808283a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff480828430>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff4808284c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff480828550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4808285e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff480828670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff480844280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689002491147556507, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrasj32nDO6qwPuuOFktzVDEPm5GZwCOAAAgD8AAIA/mn2avf+Jdz/2tGC9MMbqvqY8Sr5fXQM+AAAAAAAAAAAA7/A8SCuAujonKjMJGREwpWEeOSKBzbMAAIA/AACAPxo+hr2kikq76vOhPZEKYb6ULwg9ZWcovwAAAAAAAIA/Wn2mvZqftj/+EeO+PYcivjLjCL6cnMi+AAAAAAAAAACa1+e8FJCVuqoIarOTnRGwqgVaOnbqvTMAAIA/AACAPzPjmzs2Nma8lg23vQ3BCj3GgcI9q03cvQAAgD8AAIA/miFhPQgRlz9eL6A+QHMlvxVREj39MOA9AAAAAAAAAAAaYhU913MguQDU0L4C/9k4yJHLOxKBTbgAAIA/AAAAAPMJtj1KFSQ+zZvAvprJB76/u7m9/vL/vAAAAAAAAAAAGh5Hvm/Upz9VLfu+ifm4voS96L6iP52+AAAAAAAAAAC66gM+MSm8P1WiEz/ekhG+QssXPkqXhD4AAAAAAAAAADPMtL2ueYi6BJK1O8wvfDcdhqQ4vggNNgAAAAAAAIA/gPzCveyJornwrN86lChQNnlUPzvzeAS6AAAAAAAAgD8zeMG9w71EunEQojp8o1U1WJkEuyiCu7kAAAAAAACAP5rLU71E7L49msQ3vlO7b76dYhS+HWhFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJwZDu0CzWMAWyUTT4BjAF0lEdAlL3A+dK/VXV9lChoBkdAc4q7sv7FbWgHTVABaAhHQJS/F6zE74l1fZQoaAZHQHAUYUahpQFoB002AWgIR0CUv5hC+lCUdX2UKGgGR0Bvoezv7WNFaAdL62gIR0CUv+k3S8aodX2UKGgGR0BJZnJtBOYZaAdLumgIR0CUv/PxhDw6dX2UKGgGR0BxpzD+BH09aAdL/mgIR0CUwIEiMYMwdX2UKGgGR0Bxugx46fapaAdNIAFoCEdAlMCJYPoV23V9lChoBkdAcC4kRjBl+WgHTS4BaAhHQJTB5QMx46h1fZQoaAZHQHASrM9r435oB0vqaAhHQJTB8u7HyVh1fZQoaAZHQHCOQ/oq0+loB0vpaAhHQJTC0Y2sJY11fZQoaAZHQD3p7LMcIZ9oB0u6aAhHQJTDkqTbFjx1fZQoaAZHQFZU6eoUBXFoB0uPaAhHQJTGJXvH93t1fZQoaAZHQHLC0j1PFehoB00QAWgIR0CUxlozvZyudX2UKGgGR0BvON6mfoRqaAdNCQFoCEdAlMc5bt7a7HV9lChoBkdAcYvJV81Gb2gHTRIBaAhHQJTHN9kSVW11fZQoaAZHQFzapyZKFqVoB03oA2gIR0CUx1+Zw4sFdX2UKGgGR0ByBkwEhaC+aAdNAwFoCEdAlMgQOJ+DvnV9lChoBkdAcBbxoqTbFmgHTRcBaAhHQJTIE8lolD51fZQoaAZHQGyGcYQ8OkNoB0vcaAhHQJTINJL/S6V1fZQoaAZHQHLbSD/VAiVoB0voaAhHQJTIWcRUWEd1fZQoaAZHQHFRW0Z3s5ZoB0vUaAhHQJTIW2PT5O91fZQoaAZHQG4rTQeFL39oB0vyaAhHQJTIxTo+wC91fZQoaAZHQHHEULx7RfFoB0vZaAhHQJTJTW07bL51fZQoaAZHQHCMLwazeGhoB00rAWgIR0CUycMr3CbddX2UKGgGR0Bxhuw8nuzAaAdL+2gIR0CUyrzI3irDdX2UKGgGR0BwQ9wzch1UaAdNHQFoCEdAlMsgpazNU3V9lChoBkdAcFjSEUTL4mgHTS0BaAhHQJTMl/lQuVZ1fZQoaAZHQHBxL5mAbyZoB0vsaAhHQJTM8NZvDP51fZQoaAZHQHKQe+IuXeFoB0vVaAhHQJTOJfBvaUR1fZQoaAZHQHLJtBWxQi1oB00cAWgIR0CUzjThHbypdX2UKGgGR0By8z4BV+7UaAdL4WgIR0CUzjP0Zm7KdX2UKGgGR0BzGhKXfIjoaAdL3WgIR0CUzjlw97ngdX2UKGgGR0BvJFuBMBZIaAdNDQFoCEdAlM6nWvr4WXV9lChoBkdAcdKupS75EmgHS+poCEdAlM6+b7TDwnV9lChoBkdAcKdrCWNWEWgHTQABaAhHQJTPGwmmce91fZQoaAZHQHGXDxwyZa5oB00kAWgIR0CUz1GBFuvVdX2UKGgGR0BxZkA1ejVQaAdNMgFoCEdAlM+95dGAkXV9lChoBkdAb/BRtxdY4mgHS9xoCEdAlM/Z26kIonV9lChoBkdAcem07r9l3GgHTSkBaAhHQJTh5BomG/N1fZQoaAZHQHC08Hv+fiBoB00XAWgIR0CU4fhWYF7ldX2UKGgGR0Bx/ekYXO4YaAdL5GgIR0CU4hRYigTRdX2UKGgGR0BzKTJSzgMuaAdL3WgIR0CU4jkHUtqYdX2UKGgGR0Bw1GA7PppwaAdL52gIR0CU5AzpX6qLdX2UKGgGR0Bw023WnTAnaAdL92gIR0CU5CfcvduYdX2UKGgGR0ByWfta6jFiaAdLx2gIR0CU5FQmu1WsdX2UKGgGR0BuZwtWdVebaAdLyWgIR0CU5GSFGoaUdX2UKGgGR0Bw3fAtWdVeaAdL32gIR0CU5XavA44qdX2UKGgGR0ByNI0XP7emaAdL92gIR0CU5hJNj9XLdX2UKGgGR0Bzitmwqy4XaAdNCwFoCEdAlOYlCw8nu3V9lChoBkdAcItBHkLhJmgHS+1oCEdAlOZ1G5MDfXV9lChoBkdAcxd/e+Eh7mgHTSEBaAhHQJTmzapPykN1fZQoaAZHQHGrk8JUo8ZoB0vxaAhHQJTnD2bobGZ1fZQoaAZHQEholkYoAn5oB0t8aAhHQJTnjAVO9Fp1fZQoaAZHQHIfhISUTtdoB0vdaAhHQJTntvegte51fZQoaAZHQG0sPhZQpF1oB00lAWgIR0CU571/Ue+3dX2UKGgGR0By63fyf+S9aAdNEwFoCEdAlOgR99c8knV9lChoBkdAcGBXpnpSrGgHS/hoCEdAlOiJTQ3PzHV9lChoBkdAcFvG+bmU4mgHTRkBaAhHQJTpLgUDdQB1fZQoaAZHQEC68J2MbWFoB0vEaAhHQJTpoPAfuCx1fZQoaAZHQG8O6+36Q/5oB00qAWgIR0CU6fsfaHsUdX2UKGgGR0ByaIVsUIszaAdL2GgIR0CU6hFg2IfsdX2UKGgGR0Bv5DI7vG6xaAdL/GgIR0CU6q0DEFW5dX2UKGgGR0Bx2Cl+EytWaAdL1mgIR0CU641W8yvcdX2UKGgGR0BxQX2YfGMoaAdLx2gIR0CU69hXKbKBdX2UKGgGR0BzjxcIJJGwaAdNFQFoCEdAlOy/zvqkdnV9lChoBkdAcPkWfK6nSGgHS/hoCEdAlOz+EqUeMnV9lChoBkdAb47Kr7wazmgHS/JoCEdAlO2xLwnYx3V9lChoBkdAcZRW7e2uxWgHS9FoCEdAlO3nnlnyu3V9lChoBkdAc+ByZa3ZwmgHS+hoCEdAlO5PkRzzVnV9lChoBkdAcp6t65XlsGgHTS8BaAhHQJTuyHXVbzN1fZQoaAZHQHGcVLOAy2xoB00WAWgIR0CU78GMGX5WdX2UKGgGR0ByD2dTYNAkaAdLxGgIR0CU8DtT1kDqdX2UKGgGR0BxykHbAUL2aAdL5GgIR0CU8EnZTQ3QdX2UKGgGR0ByiqE+PikwaAdLz2gIR0CU8MiBXjlxdX2UKGgGR0BxaG7g88s+aAdLyWgIR0CU8YsGgSOBdX2UKGgGR0Byf8InjQzDaAdNUgFoCEdAlPJJZKWcBnV9lChoBkdAcUh01ZTya2gHTQoBaAhHQJTyZDKHO8l1fZQoaAZHQG92W7Wd3B5oB002AWgIR0CU8nGx2SuAdX2UKGgGR0ByaL7Q9ic5aAdL72gIR0CU9DYIBzV+dX2UKGgGR0Bye87OmixnaAdL82gIR0CU9NT6BRQ8dX2UKGgGR0ByXSNQ0oBraAdL62gIR0CU9go9cKPXdX2UKGgGR0Bv9dliBoVVaAdL7WgIR0CU97lPJq7AdX2UKGgGR0Bxw4SJ0nw5aAdLv2gIR0CU+AU+9rXUdX2UKGgGR0BtAFdcB2fTaAdNAgFoCEdAlPg45tFa0XV9lChoBkdAcAyZuAI6bWgHS9JoCEdAlPjlUyYXwnV9lChoBkdAcdM8Yht+C2gHTQoBaAhHQJT5uf9P1th1fZQoaAZHQHLGzHn2ZiNoB0vyaAhHQJT51PO6d2B1fZQoaAZHQE/Ph/Aj6epoB0uxaAhHQJT53+0gKWt1fZQoaAZHQHKPA5/9YOloB0vdaAhHQJT69og3cYZ1fZQoaAZHQHD3iG34Kx9oB01yAWgIR0CU/CjgQ6IWdX2UKGgGR0BxMezPa+N+aAdLxWgIR0CU/UXnQpnZdX2UKGgGR0Bw4b9CNS62aAdNAAFoCEdAlP2dfG+9J3V9lChoBkdAcX/1PFefI2gHTTUBaAhHQJT+EutfXwt1fZQoaAZHQHCnC/bj94xoB0v0aAhHQJUAB8rqdH51fZQoaAZHQHHWO/Dcdo5oB003AWgIR0CVAAbuc+aCdX2UKGgGR0BxfRcTrVvuaAdL7GgIR0CVAs0HhS9/dX2UKGgGR0Bxt/GQ0XP7aAdL6WgIR0CVA0qHoHLSdX2UKGgGR0Bx1jBl+VkdaAdNEwFoCEdAlQOrkOqeb3V9lChoBkdAcD6JjDsMRmgHS/VoCEdAlQPKHwgDBHV9lChoBkdAcNxhnrY5DWgHS/ZoCEdAlQPcCLdepnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo=LunarLandar-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f69a13d6892e4edd7ba2e2ea7e6cc371fdabc4630bd30d2727ef399a7e6ed19f
3
+ size 146679
ppo=LunarLandar-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo=LunarLandar-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff480828040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4808280d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff480828160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4808281f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff480828280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff480828310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff4808283a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff480828430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff4808284c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff480828550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4808285e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff480828670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff480844280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689002491147556507,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrasj32nDO6qwPuuOFktzVDEPm5GZwCOAAAgD8AAIA/mn2avf+Jdz/2tGC9MMbqvqY8Sr5fXQM+AAAAAAAAAAAA7/A8SCuAujonKjMJGREwpWEeOSKBzbMAAIA/AACAPxo+hr2kikq76vOhPZEKYb6ULwg9ZWcovwAAAAAAAIA/Wn2mvZqftj/+EeO+PYcivjLjCL6cnMi+AAAAAAAAAACa1+e8FJCVuqoIarOTnRGwqgVaOnbqvTMAAIA/AACAPzPjmzs2Nma8lg23vQ3BCj3GgcI9q03cvQAAgD8AAIA/miFhPQgRlz9eL6A+QHMlvxVREj39MOA9AAAAAAAAAAAaYhU913MguQDU0L4C/9k4yJHLOxKBTbgAAIA/AAAAAPMJtj1KFSQ+zZvAvprJB76/u7m9/vL/vAAAAAAAAAAAGh5Hvm/Upz9VLfu+ifm4voS96L6iP52+AAAAAAAAAAC66gM+MSm8P1WiEz/ekhG+QssXPkqXhD4AAAAAAAAAADPMtL2ueYi6BJK1O8wvfDcdhqQ4vggNNgAAAAAAAIA/gPzCveyJornwrN86lChQNnlUPzvzeAS6AAAAAAAAgD8zeMG9w71EunEQojp8o1U1WJkEuyiCu7kAAAAAAACAP5rLU71E7L49msQ3vlO7b76dYhS+HWhFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJwZDu0CzWMAWyUTT4BjAF0lEdAlL3A+dK/VXV9lChoBkdAc4q7sv7FbWgHTVABaAhHQJS/F6zE74l1fZQoaAZHQHAUYUahpQFoB002AWgIR0CUv5hC+lCUdX2UKGgGR0Bvoezv7WNFaAdL62gIR0CUv+k3S8aodX2UKGgGR0BJZnJtBOYZaAdLumgIR0CUv/PxhDw6dX2UKGgGR0BxpzD+BH09aAdL/mgIR0CUwIEiMYMwdX2UKGgGR0Bxugx46fapaAdNIAFoCEdAlMCJYPoV23V9lChoBkdAcC4kRjBl+WgHTS4BaAhHQJTB5QMx46h1fZQoaAZHQHASrM9r435oB0vqaAhHQJTB8u7HyVh1fZQoaAZHQHCOQ/oq0+loB0vpaAhHQJTC0Y2sJY11fZQoaAZHQD3p7LMcIZ9oB0u6aAhHQJTDkqTbFjx1fZQoaAZHQFZU6eoUBXFoB0uPaAhHQJTGJXvH93t1fZQoaAZHQHLC0j1PFehoB00QAWgIR0CUxlozvZyudX2UKGgGR0BvON6mfoRqaAdNCQFoCEdAlMc5bt7a7HV9lChoBkdAcYvJV81Gb2gHTRIBaAhHQJTHN9kSVW11fZQoaAZHQFzapyZKFqVoB03oA2gIR0CUx1+Zw4sFdX2UKGgGR0ByBkwEhaC+aAdNAwFoCEdAlMgQOJ+DvnV9lChoBkdAcBbxoqTbFmgHTRcBaAhHQJTIE8lolD51fZQoaAZHQGyGcYQ8OkNoB0vcaAhHQJTINJL/S6V1fZQoaAZHQHLbSD/VAiVoB0voaAhHQJTIWcRUWEd1fZQoaAZHQHFRW0Z3s5ZoB0vUaAhHQJTIW2PT5O91fZQoaAZHQG4rTQeFL39oB0vyaAhHQJTIxTo+wC91fZQoaAZHQHHEULx7RfFoB0vZaAhHQJTJTW07bL51fZQoaAZHQHCMLwazeGhoB00rAWgIR0CUycMr3CbddX2UKGgGR0Bxhuw8nuzAaAdL+2gIR0CUyrzI3irDdX2UKGgGR0BwQ9wzch1UaAdNHQFoCEdAlMsgpazNU3V9lChoBkdAcFjSEUTL4mgHTS0BaAhHQJTMl/lQuVZ1fZQoaAZHQHBxL5mAbyZoB0vsaAhHQJTM8NZvDP51fZQoaAZHQHKQe+IuXeFoB0vVaAhHQJTOJfBvaUR1fZQoaAZHQHLJtBWxQi1oB00cAWgIR0CUzjThHbypdX2UKGgGR0By8z4BV+7UaAdL4WgIR0CUzjP0Zm7KdX2UKGgGR0BzGhKXfIjoaAdL3WgIR0CUzjlw97ngdX2UKGgGR0BvJFuBMBZIaAdNDQFoCEdAlM6nWvr4WXV9lChoBkdAcdKupS75EmgHS+poCEdAlM6+b7TDwnV9lChoBkdAcKdrCWNWEWgHTQABaAhHQJTPGwmmce91fZQoaAZHQHGXDxwyZa5oB00kAWgIR0CUz1GBFuvVdX2UKGgGR0BxZkA1ejVQaAdNMgFoCEdAlM+95dGAkXV9lChoBkdAb/BRtxdY4mgHS9xoCEdAlM/Z26kIonV9lChoBkdAcem07r9l3GgHTSkBaAhHQJTh5BomG/N1fZQoaAZHQHC08Hv+fiBoB00XAWgIR0CU4fhWYF7ldX2UKGgGR0Bx/ekYXO4YaAdL5GgIR0CU4hRYigTRdX2UKGgGR0BzKTJSzgMuaAdL3WgIR0CU4jkHUtqYdX2UKGgGR0Bw1GA7PppwaAdL52gIR0CU5AzpX6qLdX2UKGgGR0Bw023WnTAnaAdL92gIR0CU5CfcvduYdX2UKGgGR0ByWfta6jFiaAdLx2gIR0CU5FQmu1WsdX2UKGgGR0BuZwtWdVebaAdLyWgIR0CU5GSFGoaUdX2UKGgGR0Bw3fAtWdVeaAdL32gIR0CU5XavA44qdX2UKGgGR0ByNI0XP7emaAdL92gIR0CU5hJNj9XLdX2UKGgGR0Bzitmwqy4XaAdNCwFoCEdAlOYlCw8nu3V9lChoBkdAcItBHkLhJmgHS+1oCEdAlOZ1G5MDfXV9lChoBkdAcxd/e+Eh7mgHTSEBaAhHQJTmzapPykN1fZQoaAZHQHGrk8JUo8ZoB0vxaAhHQJTnD2bobGZ1fZQoaAZHQEholkYoAn5oB0t8aAhHQJTnjAVO9Fp1fZQoaAZHQHIfhISUTtdoB0vdaAhHQJTntvegte51fZQoaAZHQG0sPhZQpF1oB00lAWgIR0CU571/Ue+3dX2UKGgGR0By63fyf+S9aAdNEwFoCEdAlOgR99c8knV9lChoBkdAcGBXpnpSrGgHS/hoCEdAlOiJTQ3PzHV9lChoBkdAcFvG+bmU4mgHTRkBaAhHQJTpLgUDdQB1fZQoaAZHQEC68J2MbWFoB0vEaAhHQJTpoPAfuCx1fZQoaAZHQG8O6+36Q/5oB00qAWgIR0CU6fsfaHsUdX2UKGgGR0ByaIVsUIszaAdL2GgIR0CU6hFg2IfsdX2UKGgGR0Bv5DI7vG6xaAdL/GgIR0CU6q0DEFW5dX2UKGgGR0Bx2Cl+EytWaAdL1mgIR0CU641W8yvcdX2UKGgGR0BxQX2YfGMoaAdLx2gIR0CU69hXKbKBdX2UKGgGR0BzjxcIJJGwaAdNFQFoCEdAlOy/zvqkdnV9lChoBkdAcPkWfK6nSGgHS/hoCEdAlOz+EqUeMnV9lChoBkdAb47Kr7wazmgHS/JoCEdAlO2xLwnYx3V9lChoBkdAcZRW7e2uxWgHS9FoCEdAlO3nnlnyu3V9lChoBkdAc+ByZa3ZwmgHS+hoCEdAlO5PkRzzVnV9lChoBkdAcp6t65XlsGgHTS8BaAhHQJTuyHXVbzN1fZQoaAZHQHGcVLOAy2xoB00WAWgIR0CU78GMGX5WdX2UKGgGR0ByD2dTYNAkaAdLxGgIR0CU8DtT1kDqdX2UKGgGR0BxykHbAUL2aAdL5GgIR0CU8EnZTQ3QdX2UKGgGR0ByiqE+PikwaAdLz2gIR0CU8MiBXjlxdX2UKGgGR0BxaG7g88s+aAdLyWgIR0CU8YsGgSOBdX2UKGgGR0Byf8InjQzDaAdNUgFoCEdAlPJJZKWcBnV9lChoBkdAcUh01ZTya2gHTQoBaAhHQJTyZDKHO8l1fZQoaAZHQG92W7Wd3B5oB002AWgIR0CU8nGx2SuAdX2UKGgGR0ByaL7Q9ic5aAdL72gIR0CU9DYIBzV+dX2UKGgGR0Bye87OmixnaAdL82gIR0CU9NT6BRQ8dX2UKGgGR0ByXSNQ0oBraAdL62gIR0CU9go9cKPXdX2UKGgGR0Bv9dliBoVVaAdL7WgIR0CU97lPJq7AdX2UKGgGR0Bxw4SJ0nw5aAdLv2gIR0CU+AU+9rXUdX2UKGgGR0BtAFdcB2fTaAdNAgFoCEdAlPg45tFa0XV9lChoBkdAcAyZuAI6bWgHS9JoCEdAlPjlUyYXwnV9lChoBkdAcdM8Yht+C2gHTQoBaAhHQJT5uf9P1th1fZQoaAZHQHLGzHn2ZiNoB0vyaAhHQJT51PO6d2B1fZQoaAZHQE/Ph/Aj6epoB0uxaAhHQJT53+0gKWt1fZQoaAZHQHKPA5/9YOloB0vdaAhHQJT69og3cYZ1fZQoaAZHQHD3iG34Kx9oB01yAWgIR0CU/CjgQ6IWdX2UKGgGR0BxMezPa+N+aAdLxWgIR0CU/UXnQpnZdX2UKGgGR0Bw4b9CNS62aAdNAAFoCEdAlP2dfG+9J3V9lChoBkdAcX/1PFefI2gHTTUBaAhHQJT+EutfXwt1fZQoaAZHQHCnC/bj94xoB0v0aAhHQJUAB8rqdH51fZQoaAZHQHHWO/Dcdo5oB003AWgIR0CVAAbuc+aCdX2UKGgGR0BxfRcTrVvuaAdL7GgIR0CVAs0HhS9/dX2UKGgGR0Bxt/GQ0XP7aAdL6WgIR0CVA0qHoHLSdX2UKGgGR0Bx1jBl+VkdaAdNEwFoCEdAlQOrkOqeb3V9lChoBkdAcD6JjDsMRmgHS/VoCEdAlQPKHwgDBHV9lChoBkdAcNxhnrY5DWgHS/ZoCEdAlQPcCLdepnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo=LunarLandar-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fb6be1bbc45d6781435db2a2b8132fe4de14e2ccc98d2152726d051b85d2441
3
+ size 87929
ppo=LunarLandar-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6072386c69fede9e2a3bc39bc62e4de9a42b646a36fe554a21df43590f6aa3f3
3
+ size 43329
ppo=LunarLandar-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo=LunarLandar-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 243.98340691378343, "std_reward": 17.033206712277973, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T13:30:46.298770"}
 
1
+ {"mean_reward": 271.4500223, "std_reward": 25.19357716162709, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-10T15:59:53.952143"}