Upload folder using huggingface_hub
Browse files- README.md +193 -293
- config_sentence_transformers.json +2 -2
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
---
|
2 |
base_model: BAAI/bge-small-en-v1.5
|
3 |
-
datasets: []
|
4 |
-
language: []
|
5 |
library_name: sentence-transformers
|
6 |
metrics:
|
7 |
- cosine_accuracy@1
|
@@ -19,78 +17,69 @@ metrics:
|
|
19 |
- cosine_ndcg@10
|
20 |
- cosine_mrr@10
|
21 |
- cosine_map@100
|
22 |
-
- dot_accuracy@1
|
23 |
-
- dot_accuracy@3
|
24 |
-
- dot_accuracy@5
|
25 |
-
- dot_accuracy@10
|
26 |
-
- dot_precision@1
|
27 |
-
- dot_precision@3
|
28 |
-
- dot_precision@5
|
29 |
-
- dot_precision@10
|
30 |
-
- dot_recall@1
|
31 |
-
- dot_recall@3
|
32 |
-
- dot_recall@5
|
33 |
-
- dot_recall@10
|
34 |
-
- dot_ndcg@10
|
35 |
-
- dot_mrr@10
|
36 |
-
- dot_map@100
|
37 |
pipeline_tag: sentence-similarity
|
38 |
tags:
|
39 |
- sentence-transformers
|
40 |
- sentence-similarity
|
41 |
- feature-extraction
|
42 |
- generated_from_trainer
|
43 |
-
- dataset_size:
|
44 |
- loss:MultipleNegativesRankingLoss
|
45 |
widget:
|
46 |
-
- source_sentence:
|
47 |
sentences:
|
48 |
-
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us
|
49 |
-
equity'',''portfolio'')": "portfolio"}]'
|
50 |
-
- '[{"get_portfolio(None,None)": "portfolio"}, {"get_attribute(''portfolio'',[''expense
|
51 |
-
ratio''],''<DATES>'')": "portfolio"}, {"sort(''portfolio'',''expense ratio'',''asc'')":
|
52 |
-
"portfolio"}]'
|
53 |
-
- '[{"get_all_portfolios(''virtual'')": "virtual_portfolios"}]'
|
54 |
-
- source_sentence: what is the volatility of each of my holdings?
|
55 |
-
sentences:
|
56 |
-
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
|
57 |
-
industrials'',''portfolio'')": "portfolio"}]'
|
58 |
-
- '[{"get_portfolio([''type''],None)": "portfolio"}, {"get_attribute(''portfolio'',[''risk''],''<DATES>'')":
|
59 |
-
"portfolio"}, {"sort(''portfolio'',''risk'',''asc'')": "portfolio"}]'
|
60 |
- '[{"get_portfolio([''type''],None)": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''ETF'')":
|
61 |
"portfolio"}, {"get_attribute(''portfolio'',[''losses''],''<DATES>'')": "portfolio"},
|
62 |
{"filter(''portfolio'',''losses'',''<'',''0'')": "portfolio"}, {"sort(''portfolio'',''losses'',''asc'')":
|
63 |
"portfolio"}]'
|
64 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
sentences:
|
66 |
- '[{"get_portfolio(None,None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
|
67 |
"portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}, {"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')":
|
68 |
"<TICKER1>_performance_data"}]'
|
69 |
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''global
|
70 |
bonds'',''returns'')": "portfolio"}]'
|
71 |
-
- '[{"get_portfolio(
|
72 |
-
"portfolio"}]'
|
73 |
-
- source_sentence:
|
74 |
sentences:
|
75 |
-
- '[{"
|
76 |
-
"portfolio"}, {"aggregate(''portfolio'',''ticker'',''marketValue'',''sum'',None)":
|
77 |
-
"stocks_amount"}]'
|
78 |
- '[{"get_portfolio([''averageCost''],None)": "portfolio"}, {"get_attribute(''portfolio'',[''price''],''<DATES>'')":
|
79 |
"portfolio"}, {"calculate(''portfolio'',[''price'', ''averageCost''],''difference'',''price_delta'')":
|
80 |
"portfolio"}, {"filter(''portfolio'',''price_delta'',''>'',''0'')": "portfolio"},
|
81 |
{"sort(''portfolio'',''price_delta'',''desc'')": "portfolio"}]'
|
82 |
-
- '[{"get_portfolio(None
|
83 |
-
|
84 |
-
|
|
|
85 |
sentences:
|
86 |
-
- '[{"get_portfolio(
|
87 |
-
|
88 |
-
"portfolio"}, {"sort(''portfolio'',''expo_<TICKER1>'',''desc'')": "portfolio"},
|
89 |
-
{"aggregate(''portfolio'',''ticker'',''expo_<TICKER1>'',''sum'',None)": "port_expo_<TICKER1>"}]'
|
90 |
-
- '[{"get_portfolio(None,None)": "portfolio"}, {"analyze_impact(''portfolio'',''<TICKER1>'',''sell'')":
|
91 |
-
"impact_of_selling_<TICKER1>"}]'
|
92 |
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
model-index:
|
95 |
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
96 |
results:
|
@@ -102,95 +91,50 @@ model-index:
|
|
102 |
type: unknown
|
103 |
metrics:
|
104 |
- type: cosine_accuracy@1
|
105 |
-
value: 0.
|
106 |
name: Cosine Accuracy@1
|
107 |
- type: cosine_accuracy@3
|
108 |
-
value: 0.
|
109 |
name: Cosine Accuracy@3
|
110 |
- type: cosine_accuracy@5
|
111 |
-
value: 0.
|
112 |
name: Cosine Accuracy@5
|
113 |
- type: cosine_accuracy@10
|
114 |
-
value: 0.
|
115 |
name: Cosine Accuracy@10
|
116 |
- type: cosine_precision@1
|
117 |
-
value: 0.
|
118 |
name: Cosine Precision@1
|
119 |
- type: cosine_precision@3
|
120 |
-
value: 0.
|
121 |
name: Cosine Precision@3
|
122 |
- type: cosine_precision@5
|
123 |
-
value: 0.
|
124 |
name: Cosine Precision@5
|
125 |
- type: cosine_precision@10
|
126 |
-
value: 0.
|
127 |
name: Cosine Precision@10
|
128 |
- type: cosine_recall@1
|
129 |
-
value: 0.
|
130 |
name: Cosine Recall@1
|
131 |
- type: cosine_recall@3
|
132 |
-
value: 0.
|
133 |
name: Cosine Recall@3
|
134 |
- type: cosine_recall@5
|
135 |
-
value: 0.
|
136 |
name: Cosine Recall@5
|
137 |
- type: cosine_recall@10
|
138 |
-
value: 0.
|
139 |
name: Cosine Recall@10
|
140 |
- type: cosine_ndcg@10
|
141 |
-
value: 0.
|
142 |
name: Cosine Ndcg@10
|
143 |
- type: cosine_mrr@10
|
144 |
-
value: 0.
|
145 |
name: Cosine Mrr@10
|
146 |
- type: cosine_map@100
|
147 |
-
value: 0.
|
148 |
name: Cosine Map@100
|
149 |
-
- type: dot_accuracy@1
|
150 |
-
value: 0.6712328767123288
|
151 |
-
name: Dot Accuracy@1
|
152 |
-
- type: dot_accuracy@3
|
153 |
-
value: 0.815068493150685
|
154 |
-
name: Dot Accuracy@3
|
155 |
-
- type: dot_accuracy@5
|
156 |
-
value: 0.8561643835616438
|
157 |
-
name: Dot Accuracy@5
|
158 |
-
- type: dot_accuracy@10
|
159 |
-
value: 0.9178082191780822
|
160 |
-
name: Dot Accuracy@10
|
161 |
-
- type: dot_precision@1
|
162 |
-
value: 0.6712328767123288
|
163 |
-
name: Dot Precision@1
|
164 |
-
- type: dot_precision@3
|
165 |
-
value: 0.27168949771689493
|
166 |
-
name: Dot Precision@3
|
167 |
-
- type: dot_precision@5
|
168 |
-
value: 0.17123287671232873
|
169 |
-
name: Dot Precision@5
|
170 |
-
- type: dot_precision@10
|
171 |
-
value: 0.0917808219178082
|
172 |
-
name: Dot Precision@10
|
173 |
-
- type: dot_recall@1
|
174 |
-
value: 0.018645357686453576
|
175 |
-
name: Dot Recall@1
|
176 |
-
- type: dot_recall@3
|
177 |
-
value: 0.02264079147640792
|
178 |
-
name: Dot Recall@3
|
179 |
-
- type: dot_recall@5
|
180 |
-
value: 0.023782343987823442
|
181 |
-
name: Dot Recall@5
|
182 |
-
- type: dot_recall@10
|
183 |
-
value: 0.02549467275494673
|
184 |
-
name: Dot Recall@10
|
185 |
-
- type: dot_ndcg@10
|
186 |
-
value: 0.1737871975139111
|
187 |
-
name: Dot Ndcg@10
|
188 |
-
- type: dot_mrr@10
|
189 |
-
value: 0.7488530115242443
|
190 |
-
name: Dot Mrr@10
|
191 |
-
- type: dot_map@100
|
192 |
-
value: 0.020899452334742528
|
193 |
-
name: Dot Map@100
|
194 |
---
|
195 |
|
196 |
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
@@ -203,7 +147,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [B
|
|
203 |
- **Model Type:** Sentence Transformer
|
204 |
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
205 |
- **Maximum Sequence Length:** 512 tokens
|
206 |
-
- **Output Dimensionality:** 384
|
207 |
- **Similarity Function:** Cosine Similarity
|
208 |
<!-- - **Training Dataset:** Unknown -->
|
209 |
<!-- - **Language:** Unknown -->
|
@@ -243,9 +187,9 @@ from sentence_transformers import SentenceTransformer
|
|
243 |
model = SentenceTransformer("sentence_transformers_model_id")
|
244 |
# Run inference
|
245 |
sentences = [
|
246 |
-
'
|
247 |
-
'[{"get_portfolio(
|
248 |
-
'[{"get_portfolio(None,None)": "portfolio"}, {"
|
249 |
]
|
250 |
embeddings = model.encode(sentences)
|
251 |
print(embeddings.shape)
|
@@ -289,38 +233,23 @@ You can finetune this model on your own dataset.
|
|
289 |
|
290 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
291 |
|
292 |
-
| Metric | Value
|
293 |
-
|
294 |
-
| cosine_accuracy@1 | 0.
|
295 |
-
| cosine_accuracy@3 | 0.
|
296 |
-
| cosine_accuracy@5 | 0.
|
297 |
-
| cosine_accuracy@10 | 0.
|
298 |
-
| cosine_precision@1 | 0.
|
299 |
-
| cosine_precision@3 | 0.
|
300 |
-
| cosine_precision@5 | 0.
|
301 |
-
| cosine_precision@10 | 0.
|
302 |
-
| cosine_recall@1 | 0.
|
303 |
-
| cosine_recall@3 | 0.
|
304 |
-
| cosine_recall@5 | 0.
|
305 |
-
| cosine_recall@10 | 0.
|
306 |
-
| cosine_ndcg@10
|
307 |
-
| cosine_mrr@10 | 0.
|
308 |
-
|
|
309 |
-
| dot_accuracy@1 | 0.6712 |
|
310 |
-
| dot_accuracy@3 | 0.8151 |
|
311 |
-
| dot_accuracy@5 | 0.8562 |
|
312 |
-
| dot_accuracy@10 | 0.9178 |
|
313 |
-
| dot_precision@1 | 0.6712 |
|
314 |
-
| dot_precision@3 | 0.2717 |
|
315 |
-
| dot_precision@5 | 0.1712 |
|
316 |
-
| dot_precision@10 | 0.0918 |
|
317 |
-
| dot_recall@1 | 0.0186 |
|
318 |
-
| dot_recall@3 | 0.0226 |
|
319 |
-
| dot_recall@5 | 0.0238 |
|
320 |
-
| dot_recall@10 | 0.0255 |
|
321 |
-
| dot_ndcg@10 | 0.1738 |
|
322 |
-
| dot_mrr@10 | 0.7489 |
|
323 |
-
| dot_map@100 | 0.0209 |
|
324 |
|
325 |
<!--
|
326 |
## Bias, Risks and Limitations
|
@@ -341,13 +270,13 @@ You can finetune this model on your own dataset.
|
|
341 |
#### Unnamed Dataset
|
342 |
|
343 |
|
344 |
-
* Size: 1,
|
345 |
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
346 |
* Approximate statistics based on the first 1000 samples:
|
347 |
-
| | sentence_0
|
348 |
-
|
349 |
-
| type | string
|
350 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 13.
|
351 |
* Samples:
|
352 |
| sentence_0 | sentence_1 |
|
353 |
|:------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
@@ -483,6 +412,7 @@ You can finetune this model on your own dataset.
|
|
483 |
- `batch_eval_metrics`: False
|
484 |
- `eval_on_start`: False
|
485 |
- `eval_use_gather_object`: False
|
|
|
486 |
- `batch_sampler`: batch_sampler
|
487 |
- `multi_dataset_batch_sampler`: round_robin
|
488 |
|
@@ -491,155 +421,125 @@ You can finetune this model on your own dataset.
|
|
491 |
### Training Logs
|
492 |
<details><summary>Click to expand</summary>
|
493 |
|
494 |
-
| Epoch | Step |
|
495 |
|:------:|:----:|:--------------:|
|
496 |
-
| 0.0183 | 2 | 0.
|
497 |
-
| 0.0367 | 4 | 0.
|
498 |
-
| 0.0550 | 6 | 0.
|
499 |
-
| 0.0734 | 8 | 0.
|
500 |
-
| 0.0917 | 10 | 0.
|
501 |
-
| 0.1101 | 12 | 0.
|
502 |
-
| 0.1284 | 14 | 0.
|
503 |
-
| 0.1468 | 16 | 0.
|
504 |
-
| 0.1651 | 18 | 0.
|
505 |
-
| 0.1835 | 20 | 0.
|
506 |
-
| 0.2018 | 22 | 0.
|
507 |
-
| 0.2202 | 24 | 0.
|
508 |
-
| 0.2385 | 26 | 0.
|
509 |
-
| 0.2569 | 28 | 0.
|
510 |
-
| 0.2752 | 30 | 0.
|
511 |
-
| 0.2936 | 32 | 0.
|
512 |
-
| 0.3119 | 34 | 0.
|
513 |
-
| 0.3303 | 36 | 0.
|
514 |
-
| 0.3486 | 38 | 0.
|
515 |
-
| 0.3670 | 40 | 0.
|
516 |
-
| 0.3853 | 42 | 0.
|
517 |
-
| 0.4037 | 44 | 0.
|
518 |
-
| 0.4220 | 46 | 0.
|
519 |
-
| 0.4404 | 48 | 0.
|
520 |
-
| 0.4587 | 50 | 0.
|
521 |
-
| 0.4771 | 52 | 0.
|
522 |
-
| 0.4954 | 54 | 0.
|
523 |
-
| 0.5138 | 56 | 0.
|
524 |
-
| 0.5321 | 58 | 0.
|
525 |
-
| 0.5505 | 60 | 0.
|
526 |
-
| 0.5688 | 62 | 0.
|
527 |
-
| 0.5872 | 64 | 0.
|
528 |
-
| 0.6055 | 66 | 0.
|
529 |
-
| 0.6239 | 68 | 0.
|
530 |
-
| 0.6422 | 70 | 0.
|
531 |
-
| 0.6606 | 72 | 0.
|
532 |
-
| 0.6789 | 74 | 0.
|
533 |
-
| 0.6972 | 76 | 0.
|
534 |
-
| 0.7156 | 78 | 0.
|
535 |
-
| 0.7339 | 80 | 0.
|
536 |
-
| 0.7523 | 82 | 0.
|
537 |
-
| 0.7706 | 84 | 0.
|
538 |
-
| 0.7890 | 86 | 0.
|
539 |
-
| 0.8073 | 88 | 0.
|
540 |
-
| 0.8257 | 90 | 0.
|
541 |
-
| 0.8440 | 92 | 0.
|
542 |
-
| 0.8624 | 94 | 0.
|
543 |
-
| 0.8807 | 96 | 0.
|
544 |
-
| 0.8991 | 98 | 0.
|
545 |
-
| 0.9174 | 100 | 0.
|
546 |
-
| 0.9358 | 102 | 0.
|
547 |
-
| 0.9541 | 104 | 0.
|
548 |
-
| 0.9725 | 106 | 0.
|
549 |
-
| 0.9908 | 108 | 0.
|
550 |
-
| 1.0 | 109 | 0.
|
551 |
-
| 1.0092 | 110 | 0.
|
552 |
-
| 1.0275 | 112 | 0.
|
553 |
-
| 1.0459 | 114 | 0.
|
554 |
-
| 1.0642 | 116 | 0.
|
555 |
-
| 1.0826 | 118 | 0.
|
556 |
-
| 1.1009 | 120 | 0.
|
557 |
-
| 1.1193 | 122 | 0.
|
558 |
-
| 1.1376 | 124 | 0.
|
559 |
-
| 1.1560 | 126 | 0.
|
560 |
-
| 1.1743 | 128 | 0.
|
561 |
-
| 1.1927 | 130 | 0.
|
562 |
-
| 1.2110 | 132 | 0.
|
563 |
-
| 1.2294 | 134 | 0.
|
564 |
-
| 1.2477 | 136 | 0.
|
565 |
-
| 1.2661 | 138 | 0.
|
566 |
-
| 1.2844 | 140 | 0.
|
567 |
-
| 1.3028 | 142 | 0.
|
568 |
-
| 1.3211 | 144 | 0.
|
569 |
-
| 1.3394 | 146 | 0.
|
570 |
-
| 1.3578 | 148 | 0.
|
571 |
-
| 1.3761 | 150 | 0.
|
572 |
-
| 1.3945 | 152 | 0.
|
573 |
-
| 1.4128 | 154 | 0.
|
574 |
-
| 1.4312 | 156 | 0.
|
575 |
-
| 1.4495 | 158 | 0.
|
576 |
-
| 1.4679 | 160 | 0.
|
577 |
-
| 1.4862 | 162 | 0.
|
578 |
-
| 1.5046 | 164 | 0.
|
579 |
-
| 1.5229 | 166 | 0.
|
580 |
-
| 1.5413 | 168 | 0.
|
581 |
-
| 1.5596 | 170 | 0.
|
582 |
-
| 1.5780 | 172 | 0.
|
583 |
-
| 1.5963 | 174 | 0.
|
584 |
-
| 1.6147 | 176 | 0.
|
585 |
-
| 1.6330 | 178 | 0.
|
586 |
-
| 1.6514 | 180 | 0.
|
587 |
-
| 1.6697 | 182 | 0.
|
588 |
-
| 1.6881 | 184 | 0.
|
589 |
-
| 1.7064 | 186 | 0.
|
590 |
-
| 1.7248 | 188 | 0.
|
591 |
-
| 1.7431 | 190 | 0.
|
592 |
-
| 1.7615 | 192 | 0.
|
593 |
-
| 1.7798 | 194 | 0.
|
594 |
-
| 1.7982 | 196 | 0.
|
595 |
-
| 1.8165 | 198 | 0.
|
596 |
-
| 1.8349 | 200 | 0.
|
597 |
-
| 1.8532 | 202 | 0.
|
598 |
-
| 1.8716 | 204 | 0.
|
599 |
-
| 1.8899 | 206 | 0.
|
600 |
-
| 1.9083 | 208 | 0.
|
601 |
-
| 1.9266 | 210 | 0.
|
602 |
-
| 1.9450 | 212 | 0.
|
603 |
-
| 1.9633 | 214 | 0.
|
604 |
-
| 1.9817 | 216 | 0.
|
605 |
-
| 2.0 | 218 | 0.
|
606 |
-
| 2.0183 | 220 | 0.
|
607 |
-
| 2.0367 | 222 | 0.0207 |
|
608 |
-
| 2.0550 | 224 | 0.0207 |
|
609 |
-
| 2.0734 | 226 | 0.0207 |
|
610 |
-
| 2.0917 | 228 | 0.0206 |
|
611 |
-
| 2.1101 | 230 | 0.0206 |
|
612 |
-
| 2.1284 | 232 | 0.0206 |
|
613 |
-
| 2.1468 | 234 | 0.0205 |
|
614 |
-
| 2.1651 | 236 | 0.0205 |
|
615 |
-
| 2.1835 | 238 | 0.0205 |
|
616 |
-
| 2.2018 | 240 | 0.0204 |
|
617 |
-
| 2.2202 | 242 | 0.0203 |
|
618 |
-
| 2.2385 | 244 | 0.0203 |
|
619 |
-
| 2.2569 | 246 | 0.0203 |
|
620 |
-
| 2.2752 | 248 | 0.0206 |
|
621 |
-
| 2.2936 | 250 | 0.0206 |
|
622 |
-
| 2.3119 | 252 | 0.0206 |
|
623 |
-
| 2.3303 | 254 | 0.0205 |
|
624 |
-
| 2.3486 | 256 | 0.0205 |
|
625 |
-
| 2.3670 | 258 | 0.0205 |
|
626 |
-
| 2.3853 | 260 | 0.0204 |
|
627 |
-
| 2.4037 | 262 | 0.0204 |
|
628 |
-
| 2.4220 | 264 | 0.0205 |
|
629 |
-
| 2.4404 | 266 | 0.0207 |
|
630 |
-
| 2.4587 | 268 | 0.0207 |
|
631 |
-
| 2.4771 | 270 | 0.0208 |
|
632 |
-
| 2.4954 | 272 | 0.0206 |
|
633 |
-
| 2.5138 | 274 | 0.0207 |
|
634 |
-
| 2.5321 | 276 | 0.0208 |
|
635 |
-
| 2.5505 | 278 | 0.0208 |
|
636 |
-
| 2.5688 | 280 | 0.0209 |
|
637 |
|
638 |
</details>
|
639 |
|
640 |
### Framework Versions
|
641 |
- Python: 3.10.9
|
642 |
-
- Sentence Transformers: 3.
|
643 |
- Transformers: 4.44.0
|
644 |
- PyTorch: 2.4.0+cu121
|
645 |
- Accelerate: 0.33.0
|
@@ -666,7 +566,7 @@ You can finetune this model on your own dataset.
|
|
666 |
#### MultipleNegativesRankingLoss
|
667 |
```bibtex
|
668 |
@misc{henderson2017efficient,
|
669 |
-
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
670 |
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
671 |
year={2017},
|
672 |
eprint={1705.00652},
|
|
|
1 |
---
|
2 |
base_model: BAAI/bge-small-en-v1.5
|
|
|
|
|
3 |
library_name: sentence-transformers
|
4 |
metrics:
|
5 |
- cosine_accuracy@1
|
|
|
17 |
- cosine_ndcg@10
|
18 |
- cosine_mrr@10
|
19 |
- cosine_map@100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
pipeline_tag: sentence-similarity
|
21 |
tags:
|
22 |
- sentence-transformers
|
23 |
- sentence-similarity
|
24 |
- feature-extraction
|
25 |
- generated_from_trainer
|
26 |
+
- dataset_size:1090
|
27 |
- loss:MultipleNegativesRankingLoss
|
28 |
widget:
|
29 |
+
- source_sentence: how do different regions contribute to my returns
|
30 |
sentences:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
- '[{"get_portfolio([''type''],None)": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''ETF'')":
|
32 |
"portfolio"}, {"get_attribute(''portfolio'',[''losses''],''<DATES>'')": "portfolio"},
|
33 |
{"filter(''portfolio'',''losses'',''<'',''0'')": "portfolio"}, {"sort(''portfolio'',''losses'',''asc'')":
|
34 |
"portfolio"}]'
|
35 |
+
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',None,''returns'')":
|
36 |
+
"portfolio"}]'
|
37 |
+
- '[{"get_portfolio([''marketValue''],None)": "portfolio"}, {"get_attribute(''portfolio'',[''<TICKER1>''],''<DATES>'')":
|
38 |
+
"portfolio"}, {"calculate(''portfolio'',[''marketValue'', ''<TICKER1>''],''multiply'',''expo_<TICKER1>'')":
|
39 |
+
"portfolio"}, {"sort(''portfolio'',''expo_<TICKER1>'',''desc'')": "portfolio"},
|
40 |
+
{"aggregate(''portfolio'',''ticker'',''expo_<TICKER1>'',''sum'',None)": "port_expo_<TICKER1>"}]'
|
41 |
+
- source_sentence: which percent of my portfolio is in single stocks?
|
42 |
+
sentences:
|
43 |
+
- '[{"get_portfolio([''quantity'', ''averageCost'', ''marketValue''],None)": "portfolio"},
|
44 |
+
{"filter(''portfolio'',''ticker'',''=='',''<TICKER1>'')": "portfolio"}, {"calculate(''portfolio'',[''quantity'',
|
45 |
+
''averageCost''],''multiply'',''cost_basis'')": "portfolio"}, {"calculate(''portfolio'',[''marketValue'',
|
46 |
+
''cost_basis''],''difference'',''profit'')": "profit_<TICKER1>"}, {"aggregate(''portfolio'',''ticker'',''profit'',''sum'',None)":
|
47 |
+
"profit_<TICKER1>"}]'
|
48 |
+
- '[{"get_portfolio([''type''],None)": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''SHARE'')":
|
49 |
+
"portfolio"}, {"aggregate(''portfolio'',''ticker'',''marketValue'',''sum'',None)":
|
50 |
+
"stocks_amount"}]'
|
51 |
+
- '[{"get_portfolio(None,None)": "portfolio"}, {"get_attribute(''portfolio'',[''dividend
|
52 |
+
yield''],''<DATES>'')": "portfolio"}, {"filter(''portfolio'',''dividend yield'',''>'',''0'')":
|
53 |
+
"portfolio"}, {"sort(''portfolio'',''dividend yield'',''desc'')": "portfolio"}]'
|
54 |
+
- source_sentence: what is the volatility of each of my holdings?
|
55 |
sentences:
|
56 |
- '[{"get_portfolio(None,None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
|
57 |
"portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}, {"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')":
|
58 |
"<TICKER1>_performance_data"}]'
|
59 |
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''global
|
60 |
bonds'',''returns'')": "portfolio"}]'
|
61 |
+
- '[{"get_portfolio([''type''],None)": "portfolio"}, {"get_attribute(''portfolio'',[''risk''],''<DATES>'')":
|
62 |
+
"portfolio"}, {"sort(''portfolio'',''risk'',''asc'')": "portfolio"}]'
|
63 |
+
- source_sentence: list all paper trading portfolios
|
64 |
sentences:
|
65 |
+
- '[{"get_all_portfolios(''virtual'')": "virtual_portfolios"}]'
|
|
|
|
|
66 |
- '[{"get_portfolio([''averageCost''],None)": "portfolio"}, {"get_attribute(''portfolio'',[''price''],''<DATES>'')":
|
67 |
"portfolio"}, {"calculate(''portfolio'',[''price'', ''averageCost''],''difference'',''price_delta'')":
|
68 |
"portfolio"}, {"filter(''portfolio'',''price_delta'',''>'',''0'')": "portfolio"},
|
69 |
{"sort(''portfolio'',''price_delta'',''desc'')": "portfolio"}]'
|
70 |
+
- '[{"get_portfolio(None,<PORTFOLIO_NAME_1>)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
|
71 |
+
"portfolio"}, {"filter(''portfolio'',''gains'',''>'',''0'')": "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')":
|
72 |
+
"portfolio"}]'
|
73 |
+
- source_sentence: what is my exposure to US Equities?
|
74 |
sentences:
|
75 |
+
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us
|
76 |
+
equity'',''portfolio'')": "portfolio"}]'
|
|
|
|
|
|
|
|
|
77 |
- '[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
|
78 |
+
industrials'',''portfolio'')": "portfolio"}]'
|
79 |
+
- '[{"get_portfolio([''type''],None)": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''ETF'')":
|
80 |
+
"portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')": "portfolio"},
|
81 |
+
{"filter(''portfolio'',''gains'',''>'',''0'')": "portfolio"}, {"sort(''portfolio'',''gains'',''desc'')":
|
82 |
+
"portfolio"}]'
|
83 |
model-index:
|
84 |
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
85 |
results:
|
|
|
91 |
type: unknown
|
92 |
metrics:
|
93 |
- type: cosine_accuracy@1
|
94 |
+
value: 0.678082191780822
|
95 |
name: Cosine Accuracy@1
|
96 |
- type: cosine_accuracy@3
|
97 |
+
value: 0.8082191780821918
|
98 |
name: Cosine Accuracy@3
|
99 |
- type: cosine_accuracy@5
|
100 |
+
value: 0.863013698630137
|
101 |
name: Cosine Accuracy@5
|
102 |
- type: cosine_accuracy@10
|
103 |
+
value: 0.9315068493150684
|
104 |
name: Cosine Accuracy@10
|
105 |
- type: cosine_precision@1
|
106 |
+
value: 0.678082191780822
|
107 |
name: Cosine Precision@1
|
108 |
- type: cosine_precision@3
|
109 |
+
value: 0.2694063926940639
|
110 |
name: Cosine Precision@3
|
111 |
- type: cosine_precision@5
|
112 |
+
value: 0.17260273972602735
|
113 |
name: Cosine Precision@5
|
114 |
- type: cosine_precision@10
|
115 |
+
value: 0.09315068493150684
|
116 |
name: Cosine Precision@10
|
117 |
- type: cosine_recall@1
|
118 |
+
value: 0.018835616438356163
|
119 |
name: Cosine Recall@1
|
120 |
- type: cosine_recall@3
|
121 |
+
value: 0.02245053272450533
|
122 |
name: Cosine Recall@3
|
123 |
- type: cosine_recall@5
|
124 |
+
value: 0.02397260273972603
|
125 |
name: Cosine Recall@5
|
126 |
- type: cosine_recall@10
|
127 |
+
value: 0.025875190258751908
|
128 |
name: Cosine Recall@10
|
129 |
- type: cosine_ndcg@10
|
130 |
+
value: 0.17595381476268288
|
131 |
name: Cosine Ndcg@10
|
132 |
- type: cosine_mrr@10
|
133 |
+
value: 0.7579120460969775
|
134 |
name: Cosine Mrr@10
|
135 |
- type: cosine_map@100
|
136 |
+
value: 0.02111814463536371
|
137 |
name: Cosine Map@100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
---
|
139 |
|
140 |
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
|
|
147 |
- **Model Type:** Sentence Transformer
|
148 |
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
149 |
- **Maximum Sequence Length:** 512 tokens
|
150 |
+
- **Output Dimensionality:** 384 dimensions
|
151 |
- **Similarity Function:** Cosine Similarity
|
152 |
<!-- - **Training Dataset:** Unknown -->
|
153 |
<!-- - **Language:** Unknown -->
|
|
|
187 |
model = SentenceTransformer("sentence_transformers_model_id")
|
188 |
# Run inference
|
189 |
sentences = [
|
190 |
+
'what is my exposure to US Equities?',
|
191 |
+
'[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'portfolio\')": "portfolio"}]',
|
192 |
+
'[{"get_portfolio(None,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'sector\',\'sector industrials\',\'portfolio\')": "portfolio"}]',
|
193 |
]
|
194 |
embeddings = model.encode(sentences)
|
195 |
print(embeddings.shape)
|
|
|
233 |
|
234 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
235 |
|
236 |
+
| Metric | Value |
|
237 |
+
|:--------------------|:----------|
|
238 |
+
| cosine_accuracy@1 | 0.6781 |
|
239 |
+
| cosine_accuracy@3 | 0.8082 |
|
240 |
+
| cosine_accuracy@5 | 0.863 |
|
241 |
+
| cosine_accuracy@10 | 0.9315 |
|
242 |
+
| cosine_precision@1 | 0.6781 |
|
243 |
+
| cosine_precision@3 | 0.2694 |
|
244 |
+
| cosine_precision@5 | 0.1726 |
|
245 |
+
| cosine_precision@10 | 0.0932 |
|
246 |
+
| cosine_recall@1 | 0.0188 |
|
247 |
+
| cosine_recall@3 | 0.0225 |
|
248 |
+
| cosine_recall@5 | 0.024 |
|
249 |
+
| cosine_recall@10 | 0.0259 |
|
250 |
+
| **cosine_ndcg@10** | **0.176** |
|
251 |
+
| cosine_mrr@10 | 0.7579 |
|
252 |
+
| cosine_map@100 | 0.0211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
<!--
|
255 |
## Bias, Risks and Limitations
|
|
|
270 |
#### Unnamed Dataset
|
271 |
|
272 |
|
273 |
+
* Size: 1,090 training samples
|
274 |
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
275 |
* Approximate statistics based on the first 1000 samples:
|
276 |
+
| | sentence_0 | sentence_1 |
|
277 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
278 |
+
| type | string | string |
|
279 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 13.28 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 87.73 tokens</li><li>max: 196 tokens</li></ul> |
|
280 |
* Samples:
|
281 |
| sentence_0 | sentence_1 |
|
282 |
|:------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
|
412 |
- `batch_eval_metrics`: False
|
413 |
- `eval_on_start`: False
|
414 |
- `eval_use_gather_object`: False
|
415 |
+
- `prompts`: None
|
416 |
- `batch_sampler`: batch_sampler
|
417 |
- `multi_dataset_batch_sampler`: round_robin
|
418 |
|
|
|
421 |
### Training Logs
|
422 |
<details><summary>Click to expand</summary>
|
423 |
|
424 |
+
| Epoch | Step | cosine_ndcg@10 |
|
425 |
|:------:|:----:|:--------------:|
|
426 |
+
| 0.0183 | 2 | 0.1179 |
|
427 |
+
| 0.0367 | 4 | 0.1184 |
|
428 |
+
| 0.0550 | 6 | 0.1193 |
|
429 |
+
| 0.0734 | 8 | 0.1201 |
|
430 |
+
| 0.0917 | 10 | 0.1227 |
|
431 |
+
| 0.1101 | 12 | 0.1235 |
|
432 |
+
| 0.1284 | 14 | 0.1255 |
|
433 |
+
| 0.1468 | 16 | 0.1267 |
|
434 |
+
| 0.1651 | 18 | 0.1299 |
|
435 |
+
| 0.1835 | 20 | 0.1320 |
|
436 |
+
| 0.2018 | 22 | 0.1348 |
|
437 |
+
| 0.2202 | 24 | 0.1367 |
|
438 |
+
| 0.2385 | 26 | 0.1383 |
|
439 |
+
| 0.2569 | 28 | 0.1413 |
|
440 |
+
| 0.2752 | 30 | 0.1420 |
|
441 |
+
| 0.2936 | 32 | 0.1432 |
|
442 |
+
| 0.3119 | 34 | 0.1435 |
|
443 |
+
| 0.3303 | 36 | 0.1451 |
|
444 |
+
| 0.3486 | 38 | 0.1471 |
|
445 |
+
| 0.3670 | 40 | 0.1491 |
|
446 |
+
| 0.3853 | 42 | 0.1503 |
|
447 |
+
| 0.4037 | 44 | 0.1523 |
|
448 |
+
| 0.4220 | 46 | 0.1525 |
|
449 |
+
| 0.4404 | 48 | 0.1531 |
|
450 |
+
| 0.4587 | 50 | 0.1535 |
|
451 |
+
| 0.4771 | 52 | 0.1534 |
|
452 |
+
| 0.4954 | 54 | 0.1529 |
|
453 |
+
| 0.5138 | 56 | 0.1528 |
|
454 |
+
| 0.5321 | 58 | 0.1556 |
|
455 |
+
| 0.5505 | 60 | 0.1568 |
|
456 |
+
| 0.5688 | 62 | 0.1576 |
|
457 |
+
| 0.5872 | 64 | 0.1577 |
|
458 |
+
| 0.6055 | 66 | 0.1577 |
|
459 |
+
| 0.6239 | 68 | 0.1575 |
|
460 |
+
| 0.6422 | 70 | 0.1586 |
|
461 |
+
| 0.6606 | 72 | 0.1596 |
|
462 |
+
| 0.6789 | 74 | 0.1612 |
|
463 |
+
| 0.6972 | 76 | 0.1617 |
|
464 |
+
| 0.7156 | 78 | 0.1637 |
|
465 |
+
| 0.7339 | 80 | 0.1638 |
|
466 |
+
| 0.7523 | 82 | 0.1637 |
|
467 |
+
| 0.7706 | 84 | 0.1635 |
|
468 |
+
| 0.7890 | 86 | 0.1634 |
|
469 |
+
| 0.8073 | 88 | 0.1640 |
|
470 |
+
| 0.8257 | 90 | 0.1641 |
|
471 |
+
| 0.8440 | 92 | 0.1652 |
|
472 |
+
| 0.8624 | 94 | 0.1652 |
|
473 |
+
| 0.8807 | 96 | 0.1657 |
|
474 |
+
| 0.8991 | 98 | 0.1650 |
|
475 |
+
| 0.9174 | 100 | 0.1664 |
|
476 |
+
| 0.9358 | 102 | 0.1668 |
|
477 |
+
| 0.9541 | 104 | 0.1671 |
|
478 |
+
| 0.9725 | 106 | 0.1683 |
|
479 |
+
| 0.9908 | 108 | 0.1689 |
|
480 |
+
| 1.0 | 109 | 0.1684 |
|
481 |
+
| 1.0092 | 110 | 0.1673 |
|
482 |
+
| 1.0275 | 112 | 0.1686 |
|
483 |
+
| 1.0459 | 114 | 0.1680 |
|
484 |
+
| 1.0642 | 116 | 0.1676 |
|
485 |
+
| 1.0826 | 118 | 0.1668 |
|
486 |
+
| 1.1009 | 120 | 0.1668 |
|
487 |
+
| 1.1193 | 122 | 0.1671 |
|
488 |
+
| 1.1376 | 124 | 0.1673 |
|
489 |
+
| 1.1560 | 126 | 0.1666 |
|
490 |
+
| 1.1743 | 128 | 0.1669 |
|
491 |
+
| 1.1927 | 130 | 0.1668 |
|
492 |
+
| 1.2110 | 132 | 0.1669 |
|
493 |
+
| 1.2294 | 134 | 0.1673 |
|
494 |
+
| 1.2477 | 136 | 0.1681 |
|
495 |
+
| 1.2661 | 138 | 0.1683 |
|
496 |
+
| 1.2844 | 140 | 0.1681 |
|
497 |
+
| 1.3028 | 142 | 0.1674 |
|
498 |
+
| 1.3211 | 144 | 0.1672 |
|
499 |
+
| 1.3394 | 146 | 0.1668 |
|
500 |
+
| 1.3578 | 148 | 0.1682 |
|
501 |
+
| 1.3761 | 150 | 0.1689 |
|
502 |
+
| 1.3945 | 152 | 0.1690 |
|
503 |
+
| 1.4128 | 154 | 0.1693 |
|
504 |
+
| 1.4312 | 156 | 0.1683 |
|
505 |
+
| 1.4495 | 158 | 0.1683 |
|
506 |
+
| 1.4679 | 160 | 0.1678 |
|
507 |
+
| 1.4862 | 162 | 0.1695 |
|
508 |
+
| 1.5046 | 164 | 0.1710 |
|
509 |
+
| 1.5229 | 166 | 0.1717 |
|
510 |
+
| 1.5413 | 168 | 0.1715 |
|
511 |
+
| 1.5596 | 170 | 0.1698 |
|
512 |
+
| 1.5780 | 172 | 0.1699 |
|
513 |
+
| 1.5963 | 174 | 0.1694 |
|
514 |
+
| 1.6147 | 176 | 0.1701 |
|
515 |
+
| 1.6330 | 178 | 0.1693 |
|
516 |
+
| 1.6514 | 180 | 0.1683 |
|
517 |
+
| 1.6697 | 182 | 0.1692 |
|
518 |
+
| 1.6881 | 184 | 0.1689 |
|
519 |
+
| 1.7064 | 186 | 0.1696 |
|
520 |
+
| 1.7248 | 188 | 0.1696 |
|
521 |
+
| 1.7431 | 190 | 0.1700 |
|
522 |
+
| 1.7615 | 192 | 0.1705 |
|
523 |
+
| 1.7798 | 194 | 0.1718 |
|
524 |
+
| 1.7982 | 196 | 0.1719 |
|
525 |
+
| 1.8165 | 198 | 0.1723 |
|
526 |
+
| 1.8349 | 200 | 0.1721 |
|
527 |
+
| 1.8532 | 202 | 0.1717 |
|
528 |
+
| 1.8716 | 204 | 0.1722 |
|
529 |
+
| 1.8899 | 206 | 0.1722 |
|
530 |
+
| 1.9083 | 208 | 0.1728 |
|
531 |
+
| 1.9266 | 210 | 0.1734 |
|
532 |
+
| 1.9450 | 212 | 0.1733 |
|
533 |
+
| 1.9633 | 214 | 0.1742 |
|
534 |
+
| 1.9817 | 216 | 0.1749 |
|
535 |
+
| 2.0 | 218 | 0.1750 |
|
536 |
+
| 2.0183 | 220 | 0.1760 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
</details>
|
539 |
|
540 |
### Framework Versions
|
541 |
- Python: 3.10.9
|
542 |
+
- Sentence Transformers: 3.3.1
|
543 |
- Transformers: 4.44.0
|
544 |
- PyTorch: 2.4.0+cu121
|
545 |
- Accelerate: 0.33.0
|
|
|
566 |
#### MultipleNegativesRankingLoss
|
567 |
```bibtex
|
568 |
@misc{henderson2017efficient,
|
569 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
570 |
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
571 |
year={2017},
|
572 |
eprint={1705.00652},
|
config_sentence_transformers.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "3.
|
4 |
"transformers": "4.44.0",
|
5 |
"pytorch": "2.4.0+cu121"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name":
|
10 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
"transformers": "4.44.0",
|
5 |
"pytorch": "2.4.0+cu121"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 133462128
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1600be1ae30bbefa7dba2d3fb026b69a5459d9e461cfa33ea1d7b4f64e0f77fd
|
3 |
size 133462128
|