mahdin70 commited on
Commit
d61a3c5
·
verified ·
1 Parent(s): 24e8d89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -165
README.md CHANGED
@@ -1,199 +1,121 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - Code
5
+ - Vulnerability
6
+ - Detection
7
+ datasets:
8
+ - DetectVul/devign
9
+ language:
10
+ - en
11
+ base_model:
12
+ - microsoft/codebert-base
13
+ license: mit
14
+ metrics:
15
+ - accuracy
16
+ - precision
17
+ - f1
18
+ - recall
19
  ---
20
 
21
+ ## CodeBERT for Code Vulnerability Detection
 
 
 
22
 
23
+ ## Model Summary
24
+ This model is a fine-tuned version of **microsoft/codebert-base**, optimized for detecting vulnerabilities in code. It is trained on the **DetectVul/devign** dataset. The model takes in a code snippet and classifies it as either **safe (0)** or **vulnerable (1)**.
25
 
26
  ## Model Details
27
 
28
+ - **Developed by:** Mukit Mahdin
29
+ - **Finetuned from:** `microsoft/codebert-base`
30
+ - **Language(s):** English (for code comments & metadata), C/C++
31
+ - **License:** MIT
32
+ - **Task:** Code vulnerability detection
33
+ - **Dataset Used:** `DetectVul/devign`
34
+ - **Architecture:** Transformer-based sequence classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Uses
37
 
 
 
38
  ### Direct Use
39
+ This model can be used for **static code analysis**, security audits, and automatic vulnerability detection in software repositories. It is useful for:
40
+ - **Developers**: To analyze their code for potential security flaws.
41
+ - **Security Teams**: To scan repositories for known vulnerabilities.
42
+ - **Researchers**: To study vulnerability detection in AI-powered systems.
43
 
44
+ ### Downstream Use
45
+ This model can be integrated into **IDE plugins**, **CI/CD pipelines**, or **security scanners** to provide real-time vulnerability detection.
 
 
 
 
 
 
 
46
 
47
  ### Out-of-Scope Use
48
+ - The model is **not meant to replace human security experts**.
49
+ - It may not generalize well to **languages other than C/C++**.
50
+ - False positives/negatives may occur due to dataset limitations.
 
51
 
52
  ## Bias, Risks, and Limitations
53
+ - **False Positives & False Negatives:** The model may flag safe code as vulnerable or miss actual vulnerabilities.
54
+ - **Limited to C/C++:** The model was trained on a dataset primarily composed of **C and C++ code**. It may not perform well on other languages.
55
+ - **Dataset Bias:** The training data may not cover all possible vulnerabilities.
56
 
57
+ ### Recommendations
58
+ Users should **not rely solely on the model** for security assessments. Instead, it should be used alongside **manual code review and static analysis tools**.
59
 
60
+ ## How to Get Started with the Model
61
+ Use the code below to load the model and run inference on a sample code snippet:
62
 
63
+ ```python
64
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
65
+ import torch
66
 
67
+ # Load the fine-tuned model
68
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
69
+ model = AutoModelForSequenceClassification.from_pretrained("mahdin70/codebert-devign-code-vulnerability-detector")
70
 
71
+ # Sample code snippet
72
+ code_snippet = '''
73
+ void process(char *input) {
74
+ char buffer[50];
75
+ strcpy(buffer, input); // Potential buffer overflow
76
+ }
77
+ '''
78
 
79
+ # Tokenize the input
80
+ inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
81
 
82
+ # Run inference
83
+ with torch.no_grad():
84
+ outputs = model(**inputs)
85
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
86
+ predicted_label = torch.argmax(predictions, dim=1).item()
87
 
88
+ # Output the result
89
+ print("Vulnerable Code" if predicted_label == 1 else "Safe Code")
90
+ ```
91
 
92
  ## Training Details
93
 
94
  ### Training Data
95
+ - **Dataset:** `DetectVul/devign`
96
+ - **Classes:** `0 (Safe)`, `1 (Vulnerable)`
 
 
97
 
98
  ### Training Procedure
99
+ - **Optimizer:** AdamW
100
+ - **Loss Function:** CrossEntropyLoss
101
+ - **Batch Size:** 8
102
+ - **Learning Rate:** 2e-05
103
+ - **Epochs:** 3
104
+ - **Hardware Used:** T4 GPU
105
+
106
+ ### Metrics
107
+ | Metric | Score |
108
+ |------------|-------------|
109
+ | **Train Loss** | 0.5898 |
110
+ | **Evaluation Loss** | 0.6153 |
111
+ | **Accuracy** | 64.09% |
112
+ | **F1 Score** | 46.42% |
113
+ | **Precision** | 73.78% |
114
+ | **Recall** | 33.86% |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
  ## Environmental Impact
117
 
118
+ | Factor | Value |
119
+ |-----------|----------|
120
+ | **GPU Used** | T4 GPU |
121
+ | **Training Time** | ~1 hour |