Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,155 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
-
|
|
|
160 |
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- Vulnerability
|
5 |
+
- C/C++
|
6 |
+
- Detection
|
7 |
+
datasets:
|
8 |
+
- DetectVul/devign
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model:
|
12 |
+
- microsoft/unixcoder-base
|
13 |
---
|
14 |
|
15 |
+
# Model Card: UniXcoder for Code Vulnerability Detection
|
|
|
|
|
|
|
16 |
|
17 |
+
## Model Summary
|
18 |
+
This model is a fine-tuned version of **Microsoft's UniXcoder**, optimized for detecting vulnerabilities in C/C++ code. It is trained on the **DetectVul/devign** dataset and achieves **68.34% accuracy** with an **F1 score of 62.14%**. The model takes in a code snippet and classifies it as either **safe (0)** or **vulnerable (1)**.
|
19 |
|
20 |
## Model Details
|
21 |
|
22 |
+
- **Developed by:** [mahdin70(Mukit Mahdin)]
|
23 |
+
- **Finetuned from:** `microsoft/unixcoder-base`
|
24 |
+
- **Language(s):** English (for code comments & metadata), C/C++
|
25 |
+
- **License:** MIT
|
26 |
+
- **Task:** Code vulnerability detection
|
27 |
+
- **Dataset Used:** `DetectVul/devign`
|
28 |
+
- **Architecture:** Transformer-based sequence classification
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
## Model Sources
|
31 |
+
- **Repository:** [Add Hugging Face Model Link Here]
|
32 |
+
- **Paper (UniXcoder):** [https://arxiv.org/abs/2203.03850](https://arxiv.org/abs/2203.03850)
|
33 |
+
- **Demo (Optional):** [Add Gradio/Streamlit Link Here]
|
|
|
|
|
|
|
34 |
|
35 |
## Uses
|
36 |
|
|
|
|
|
37 |
### Direct Use
|
38 |
+
This model can be used for **static code analysis**, security audits, and automatic vulnerability detection in software repositories. It is useful for:
|
39 |
+
- **Developers**: To analyze their code for potential security flaws.
|
40 |
+
- **Security Teams**: To scan repositories for known vulnerabilities.
|
41 |
+
- **Researchers**: To study vulnerability detection in AI-powered systems.
|
42 |
|
43 |
+
### Downstream Use
|
44 |
+
This model can be integrated into **IDE plugins**, **CI/CD pipelines**, or **security scanners** to provide real-time vulnerability detection.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
### Out-of-Scope Use
|
47 |
+
- The model is **not meant to replace human security experts**.
|
48 |
+
- It may not generalize well to **languages other than C/C++**.
|
49 |
+
- False positives/negatives may occur due to dataset limitations.
|
|
|
50 |
|
51 |
## Bias, Risks, and Limitations
|
52 |
+
- **False Positives & False Negatives:** The model may flag safe code as vulnerable or miss actual vulnerabilities.
|
53 |
+
- **Limited to C/C++:** The model was trained on a dataset primarily composed of **C and C++ code**. It may not perform well on other languages.
|
54 |
+
- **Dataset Bias:** The training data may not cover all possible vulnerabilities.
|
55 |
|
56 |
+
### Recommendations
|
57 |
+
Users should **not rely solely on the model** for security assessments. Instead, it should be used alongside **manual code review and static analysis tools**.
|
58 |
|
59 |
+
## How to Get Started with the Model
|
60 |
+
Use the code below to load the model and run inference on a sample code snippet:
|
61 |
|
62 |
+
```python
|
63 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
64 |
+
import torch
|
65 |
|
66 |
+
# Load the fine-tuned model
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained("your_username/unixcoder-code-vulnerability-detector")
|
68 |
+
model = AutoModelForSequenceClassification.from_pretrained("your_username/unixcoder-code-vulnerability-detector")
|
69 |
|
70 |
+
# Sample code snippet
|
71 |
+
code_snippet = """
|
72 |
+
void process(char *input) {
|
73 |
+
char buffer[50];
|
74 |
+
strcpy(buffer, input); // Potential buffer overflow
|
75 |
+
}
|
76 |
+
"""
|
77 |
|
78 |
+
# Tokenize the input
|
79 |
+
inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
80 |
|
81 |
+
# Run inference
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs = model(**inputs)
|
84 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
85 |
+
predicted_label = torch.argmax(predictions, dim=1).item()
|
86 |
|
87 |
+
# Output the result
|
88 |
+
print("⚠️ Vulnerable Code" if predicted_label == 1 else "✅ Safe Code")
|
89 |
+
```
|
90 |
|
91 |
## Training Details
|
92 |
|
93 |
### Training Data
|
94 |
+
- **Dataset:** `DetectVul/devign`
|
95 |
+
- **Classes:** `0 (Safe)`, `1 (Vulnerable)`
|
96 |
+
- **Size:** 50,000+ code snippets
|
|
|
97 |
|
98 |
### Training Procedure
|
99 |
+
- **Optimizer:** AdamW
|
100 |
+
- **Loss Function:** Cross-Entropy Loss
|
101 |
+
- **Batch Size:** 8
|
102 |
+
- **Learning Rate:** 2e-5
|
103 |
+
- **Epochs:** 3
|
104 |
+
- **Hardware Used:** 2x T4 GPU
|
105 |
+
- **Mixed Precision:** FP16
|
106 |
+
|
107 |
+
### Training Metrics
|
108 |
+
| Metric | Score |
|
109 |
+
|---------|--------|
|
110 |
+
| **Train Loss** | 0.4835 |
|
111 |
+
| **Evaluation Loss** | 0.6855 |
|
112 |
+
| **Accuracy** | 68.34% |
|
113 |
+
| **F1 Score** | 62.14% |
|
114 |
+
| **Precision** | 69.18% |
|
115 |
+
| **Recall** | 56.40% |
|
116 |
|
117 |
## Evaluation
|
118 |
|
119 |
+
### Testing Data & Metrics
|
120 |
+
The model was evaluated using **20% of the dataset**, with the following results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
- **Evaluation Accuracy:** 68.34%
|
123 |
+
- **F1 Score:** 62.14%
|
124 |
+
- **Precision:** 69.18%
|
125 |
+
- **Recall:** 56.40%
|
126 |
+
- **Evaluation Runtime:** 41.16 sec
|
127 |
+
- **Evaluation Speed:** 53.1 samples/sec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
## Environmental Impact
|
130 |
|
131 |
+
| Factor | Value |
|
132 |
+
|---------|--------|
|
133 |
+
| **GPU Used** | 2x T4 GPU |
|
134 |
+
| **Training Time** | ~1 hour |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
## Citation
|
137 |
+
If you use this model in your research or applications, please cite:
|
138 |
|
139 |
+
```
|
140 |
+
@article{unixcoder,
|
141 |
+
title={UniXcoder: Unified Cross-Modal Pretraining for Code Representation},
|
142 |
+
author={Guo, Daya and Wang, Shuo and Wan, Yao and others},
|
143 |
+
year={2022},
|
144 |
+
journal={arXiv preprint arXiv:2203.03850}
|
145 |
+
}
|
146 |
+
```
|
147 |
|
148 |
+
## Model Card Authors
|
149 |
+
- **Mukit Mahdin**
|
150 |
+
- Contact: [[email protected]]
|
151 |
|
|
|
152 |
|
153 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
Let me know if you need further modifications! 🚀
|