malay-patel
commited on
Commit
路
b117579
1
Parent(s):
d8b328c
Update README.md
Browse files
README.md
CHANGED
@@ -12,22 +12,26 @@ probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# malay-patel/bert-finetuned-squad-nq
|
14 |
|
15 |
-
This model is a fine-tuned version of [nlpconnect/roberta-base-squad2-nq](https://huggingface.co/nlpconnect/roberta-base-squad2-nq) on
|
16 |
-
|
17 |
It achieves the following results on the evaluation set:
|
18 |
- Train Loss: 1.5461
|
19 |
- Train End Logits Accuracy: 0.6253
|
20 |
- Train Start Logits Accuracy: 0.6120
|
21 |
- Epoch: 2
|
22 |
|
|
|
|
|
|
|
|
|
23 |
## Intended uses & limitations
|
24 |
|
25 |
-
|
26 |
|
27 |
## Training and evaluation data
|
28 |
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
### Training hyperparameters
|
33 |
|
@@ -43,9 +47,10 @@ The following hyperparameters were used during training:
|
|
43 |
| 1.5423 | 0.6286 | 0.6192 | 1 |
|
44 |
| 1.5461 | 0.6253 | 0.6120 | 2 |
|
45 |
|
|
|
46 |
### Framework versions
|
47 |
|
48 |
- Transformers 4.24.0
|
49 |
- TensorFlow 2.9.2
|
50 |
- Datasets 2.7.1
|
51 |
-
- Tokenizers 0.13.2
|
|
|
12 |
|
13 |
# malay-patel/bert-finetuned-squad-nq
|
14 |
|
15 |
+
This model is a fine-tuned version of [nlpconnect/roberta-base-squad2-nq](https://huggingface.co/nlpconnect/roberta-base-squad2-nq) on an unknown dataset.
|
|
|
16 |
It achieves the following results on the evaluation set:
|
17 |
- Train Loss: 1.5461
|
18 |
- Train End Logits Accuracy: 0.6253
|
19 |
- Train Start Logits Accuracy: 0.6120
|
20 |
- Epoch: 2
|
21 |
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
## Intended uses & limitations
|
27 |
|
28 |
+
More information needed
|
29 |
|
30 |
## Training and evaluation data
|
31 |
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
|
36 |
### Training hyperparameters
|
37 |
|
|
|
47 |
| 1.5423 | 0.6286 | 0.6192 | 1 |
|
48 |
| 1.5461 | 0.6253 | 0.6120 | 2 |
|
49 |
|
50 |
+
|
51 |
### Framework versions
|
52 |
|
53 |
- Transformers 4.24.0
|
54 |
- TensorFlow 2.9.2
|
55 |
- Datasets 2.7.1
|
56 |
+
- Tokenizers 0.13.2
|