File size: 4,745 Bytes
2ab604a
cf4277f
2ab604a
 
 
cf4277f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab604a
 
4ff9ed6
 
c89d127
 
8dd0d15
2ab604a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4277f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: cc-by-nc-4.0
library_name: transformers
tags:
- llama-3
model-index:
- name: badger-l3-instruct-32k
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.65
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 81.4
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 67.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 55.02
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.35
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.4
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
      name: Open LLM Leaderboard
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b19c1b098c85365af5a83e/5dq0evzBjVulEOjYHW68O.png)

*updated with fixed tokenizer config*

# Badger/δ Llama 3 Instruct 32k

I haven't been releasing my base merges so far, but this one seems worthy.

Badger is a *recursive maximally disjoint pairwise normalized fourier interpolation* of the following models:

```python
models = [
 'Einstein-v6.1-Llama3-8B',
 'L3-TheSpice-8b-v0.8.3',
 'dolphin-2.9-llama3-8b',
 'Configurable-Hermes-2-Pro-Llama-3-8B',
 'MAmmoTH2-8B-Plus',
 'Pantheon-RP-1.0-8b-Llama-3',
 'Tiamat-8b-1.2-Llama-3-DPO',
 'Buzz-8b-Large-v0.5',
 'Kei_Llama3_8B',
 'Llama-3-Lumimaid-8B-v0.1',
 'llama-3-cat-8b-instruct-pytorch',
 'Llama-3SOME-8B-v1',
 'Roleplay-Llama-3-8B',
 'Llama-3-LewdPlay-8B-evo',
 'opus-v1.2-llama-3-8b-instruct-run3.5-epoch2.5',
 'meta-llama-3-8b-instruct-hf-ortho-baukit-5fail-3000total-bf16',
 'Poppy_Porpoise-0.72-L3-8B',
 'Llama-3-8B-Instruct-norefusal',
 'Meta-Llama-3-8B-Instruct-DPO',
 'badger',
 'Llama-3-Refueled',
 'Llama-3-8B-Instruct-DPO-v0.4',
 'Llama-3-8B-Instruct-Gradient-1048k',
 'Mahou-1.0-llama3-8B',
 'Llama-3-SauerkrautLM-8b-Instruct',
 'Llama-3-Soliloquy-8B-v2'
]
```

I have included the notebook code I used to generate the model, for any that are curious.  I have adjusted the config for rope scale 4, and 16k-32k context both seem coherent.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maldv__badger-l3-instruct-32k)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |69.49|
|AI2 Reasoning Challenge (25-Shot)|63.65|
|HellaSwag (10-Shot)              |81.40|
|MMLU (5-Shot)                    |67.13|
|TruthfulQA (0-shot)              |55.02|
|Winogrande (5-shot)              |77.35|
|GSM8k (5-shot)                   |72.40|