File size: 4,745 Bytes
2ab604a cf4277f 2ab604a cf4277f 2ab604a 4ff9ed6 c89d127 8dd0d15 2ab604a cf4277f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: cc-by-nc-4.0
library_name: transformers
tags:
- llama-3
model-index:
- name: badger-l3-instruct-32k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.4
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.13
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.02
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.4
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k
name: Open LLM Leaderboard
---

*updated with fixed tokenizer config*
# Badger/δ Llama 3 Instruct 32k
I haven't been releasing my base merges so far, but this one seems worthy.
Badger is a *recursive maximally disjoint pairwise normalized fourier interpolation* of the following models:
```python
models = [
'Einstein-v6.1-Llama3-8B',
'L3-TheSpice-8b-v0.8.3',
'dolphin-2.9-llama3-8b',
'Configurable-Hermes-2-Pro-Llama-3-8B',
'MAmmoTH2-8B-Plus',
'Pantheon-RP-1.0-8b-Llama-3',
'Tiamat-8b-1.2-Llama-3-DPO',
'Buzz-8b-Large-v0.5',
'Kei_Llama3_8B',
'Llama-3-Lumimaid-8B-v0.1',
'llama-3-cat-8b-instruct-pytorch',
'Llama-3SOME-8B-v1',
'Roleplay-Llama-3-8B',
'Llama-3-LewdPlay-8B-evo',
'opus-v1.2-llama-3-8b-instruct-run3.5-epoch2.5',
'meta-llama-3-8b-instruct-hf-ortho-baukit-5fail-3000total-bf16',
'Poppy_Porpoise-0.72-L3-8B',
'Llama-3-8B-Instruct-norefusal',
'Meta-Llama-3-8B-Instruct-DPO',
'badger',
'Llama-3-Refueled',
'Llama-3-8B-Instruct-DPO-v0.4',
'Llama-3-8B-Instruct-Gradient-1048k',
'Mahou-1.0-llama3-8B',
'Llama-3-SauerkrautLM-8b-Instruct',
'Llama-3-Soliloquy-8B-v2'
]
```
I have included the notebook code I used to generate the model, for any that are curious. I have adjusted the config for rope scale 4, and 16k-32k context both seem coherent.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maldv__badger-l3-instruct-32k)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.49|
|AI2 Reasoning Challenge (25-Shot)|63.65|
|HellaSwag (10-Shot) |81.40|
|MMLU (5-Shot) |67.13|
|TruthfulQA (0-shot) |55.02|
|Winogrande (5-shot) |77.35|
|GSM8k (5-shot) |72.40|
|