File size: 4,964 Bytes
2b37ce8 0a289b3 dd17426 408798f a47a241 408798f 5770b51 408798f 5770b51 408798f 5770b51 408798f 5770b51 408798f 5770b51 408798f 5770b51 408798f 2b37ce8 0a289b3 960d73a 0a289b3 9526983 0a289b3 ad62b7e 0a289b3 aaa72f0 0a289b3 aaa72f0 0a289b3 aaa72f0 ac6800a e5a9b70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
license: cc-by-nc-4.0
tags:
- merge
- conversational
- multi-task
pipeline_tag: text-generation
base_model:
- paulml/OmniBeagleSquaredMBX-v3-7B
- ZySec-AI/ZySec-7B-v1
- liminerity/Omningotex-7b-slerp
- localfultonextractor/Erosumika-7B
- KatyTheCutie/LemonadeRP-4.5.3
- cgato/Thespis-Krangled-7b
- CorticalStack/pastiche-crown-clown-7b-dare
- snorkelai/Snorkel-Mistral-PairRM-DPO
- MTSAIR/multi_verse_model
model-index:
- name: winter-garden-7b-alpha - "Smart Assistant"
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.19
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/winter-garden-7b-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.36
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/winter-garden-7b-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.2
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/winter-garden-7b-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 50.94
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/winter-garden-7b-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.35
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/winter-garden-7b-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.44
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/winter-garden-7b-alpha
name: Open LLM Leaderboard
---
# Winter Garden 7B - α - "Smart Assistant"
It was mentioned that we are in the open ai dark winter; so I thought I would make myself a nice winter garden.
## An experiment
I've merged four partitions successfully in the past, so lets go for 9! I started with:
* Mistral-7B-v0.1
and merged in
* OmniBeagleSquaredMBX-v3-7B
* ZySec-7B-v1
* Omningotex-7b-slerp
* Erosumika-7B
* LemonadeRP-4.5.3
* Thespis-Krangled-7b
* pastiche-crown-clown-7b-dare
* Snorkel-Mistral-PairRM-DPO
* multi_verse_model
### 9-partition merge
All of the layers were partitioned in to 9 random bins. Alternating models were slerped at [0...1], and [1...0] gradients; except attention, which was slerped at 0.03.
This means that the model is still predominantly ordered around base mistral - including half of the input and output layers, and 28% of attention.
### Other
Includes fast tokenizer.
## Chat Template
I put a conversational chat template, which takes "name", "to" (optional), and "content" as the turns. It is designed to follow a transcript style chat which is used by some of the models. This type of use-case is best done by outlining a scene and creating a character card.
```
### {% title %}
{% metadata %}
USER: Hello
ASSISTANT: Hi, how are you?
```
It leans to being a coder when given an `### Instruction`, follows `<s>[INST][/INST]`, and likes `<|user|>`, `<|assistant|>` as well.
A quite cheery and intelligent model. Very good with science and math, but still capable of a decent amount of creativity for a 7b model.
## Scores
Metric | Score
---|---
Average | 66.91
ARC | 65.19
HellaSwag | 85.36
MMLU | 65.2
TruthfulQA | 50.94
Winogrande | 80.35
GSM8K | 54.44
[Details](https://huggingface.co/datasets/open-llm-leaderboard/details_maldv__winter-garden-7b-alpha) |