File size: 5,069 Bytes
faccb86 a24bbb3 faccb86 acecb7f 6c2f3c1 a24bbb3 faccb86 acecb7f faccb86 a24bbb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
language:
- en
license: llama2
tags:
- Medicine
datasets:
- yahma/alpaca-cleaned
base_model: epfl-llm/meditron-7b
model-index:
- name: meditron-7b-chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 50.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 75.37
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.49
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.56
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.16
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 9.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/meditron-7b-chat
name: Open LLM Leaderboard
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
meditron-7b-chat is a finetuned version of [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-7b) using SFT Training on the Alpaca Dataset.
This model can answer information about different excplicit ideas in medicine (see [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-7b) for more info)
### Model Description
- **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/)
- **Language(s) (NLP):** English
- **Finetuned from model:** [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-7b)
### Prompt Template
```
### Instruction:
<prompt> (without the <>)
### Response:
```
## How to Get Started with the Model
Use the code sample provided in the original post to interact with the model.
```python
from transformers import AutoTokenizer,AutoModelForCausalLM
model_id = "malhajar/meditron-7b-chat"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
torch_dtype=torch.float16,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_id)
question: "what is tract infection?"
# For generating a response
prompt = '''
### Instruction:
{question}
### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
top_p=0.95)
response = tokenizer.decode(output[0])
print(response)
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_malhajar__meditron-7b-chat)
| Metric |Value|
|---------------------------------|----:|
|Avg. |49.59|
|AI2 Reasoning Challenge (25-Shot)|50.77|
|HellaSwag (10-Shot) |75.37|
|MMLU (5-Shot) |40.49|
|TruthfulQA (0-shot) |48.56|
|Winogrande (5-shot) |73.16|
|GSM8k (5-shot) | 9.17|
|