Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
An Arabic abstractive text summarization model.
|
2 |
+
A fine-tuned AraT5 model on a dataset that consists of 86,523 paragraph-summary pairs.
|
3 |
+
|
4 |
+
More details on the fine-tuning of this model will be released later.
|
5 |
+
|
6 |
+
The model can be used as follows:
|
7 |
+
```python
|
8 |
+
from arabert.preprocess import ArabertPreprocessor
|
9 |
+
|
10 |
+
model_name="malmarjeh/t5-arabic-text-summarization"
|
11 |
+
arabert_prep = ArabertPreprocessor(model_name=model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
14 |
+
pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
|
15 |
+
|
16 |
+
text = "ولن نبالغ إذا قلنا إن هاتف أو كمبيوتر المكتب في زمننا هذا ضروري"
|
17 |
+
preprocessor = ArabertPreprocessor(model_name="")
|
18 |
+
preprocessor.preprocess(text)
|
19 |
+
result = pipeline(text,
|
20 |
+
pad_token_id=tokenizer.eos_token_id,
|
21 |
+
num_beams=3,
|
22 |
+
repetition_penalty=3.0,
|
23 |
+
max_length=200,
|
24 |
+
length_penalty=1.0,
|
25 |
+
no_repeat_ngram_size = 3)[0]['generated_text']
|
26 |
+
result
|
27 |
+
>>>"و+ لن نبالغ إذا قل +نا إن هاتف أو كمبيوتر ال+ مكتب في زمن +نا هذا ضروري"
|
28 |
+
```
|