|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Fine-tuning the library models for sequence to sequence speech recognition
|
|
with 🤗 Datasets' streaming mode.
|
|
"""
|
|
|
|
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import datasets
|
|
import torch
|
|
from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
|
|
from datasets import Audio, interleave_datasets, IterableDataset
|
|
from torch.utils.data import IterableDataset
|
|
|
|
import evaluate
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoFeatureExtractor,
|
|
AutoModelForSpeechSeq2Seq,
|
|
AutoProcessor,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
Seq2SeqTrainer,
|
|
Seq2SeqTrainingArguments,
|
|
TrainerCallback,
|
|
set_seed,
|
|
)
|
|
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
|
from transformers.trainer_pt_utils import IterableDatasetShard
|
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
|
|
check_min_version("4.25.0.dev0")
|
|
|
|
require_version(
|
|
"datasets>=1.18.2",
|
|
"To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt",
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={
|
|
"help": "Path to pretrained model or model identifier from huggingface.co/models"
|
|
}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Pretrained config name or path if not the same as model_name"
|
|
},
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Pretrained tokenizer name or path if not the same as model_name"
|
|
},
|
|
)
|
|
feature_extractor_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "feature extractor name or path if not the same as model_name"
|
|
},
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Where to store the pretrained models downloaded from huggingface.co"
|
|
},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
|
|
},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={
|
|
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
|
"with private models)."
|
|
)
|
|
},
|
|
)
|
|
freeze_feature_encoder: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to freeze the feature encoder layers of the model."},
|
|
)
|
|
freeze_encoder: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."},
|
|
)
|
|
forced_decoder_ids: List[List[int]] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"A list of pairs of integers which indicates a mapping from generation indices to token indices "
|
|
"that will be forced before sampling. For example, [[0, 123]] means the first generated token "
|
|
"will always be a token of index 123."
|
|
)
|
|
},
|
|
)
|
|
suppress_tokens: List[int] = field(
|
|
default=None,
|
|
metadata={"help": "A list of tokens that will be suppressed at generation."},
|
|
)
|
|
model_index_name: str = field(
|
|
default=None, metadata={"help": "Pretty name for the model card."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: str = field(
|
|
default=None,
|
|
metadata={"help": "The name of the dataset to use (via the datasets library)."},
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The configuration name of the dataset to use (via the datasets library)."
|
|
},
|
|
)
|
|
text_column: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The name of the column in the datasets containing the full texts (for summarization)."
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
audio_column_name: str = field(
|
|
default="audio",
|
|
metadata={
|
|
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
|
|
},
|
|
)
|
|
text_column_name: str = field(
|
|
default="text",
|
|
metadata={
|
|
"help": "The name of the dataset column containing the text data. Defaults to 'text'"
|
|
},
|
|
)
|
|
max_duration_in_seconds: float = field(
|
|
default=20.0,
|
|
metadata={
|
|
"help": (
|
|
"Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
|
|
" 'max_duration_in_seconds`"
|
|
)
|
|
},
|
|
)
|
|
min_duration_in_seconds: float = field(
|
|
default=0.0,
|
|
metadata={
|
|
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
|
|
},
|
|
)
|
|
train_split_name: str = field(
|
|
default="train",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
eval_split_name: str = field(
|
|
default="test",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
do_lower_case: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether the target text should be lower cased."},
|
|
)
|
|
do_remove_punctuation: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether the target text should be striped of punctuation."},
|
|
)
|
|
do_normalize_eval: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Whether to normalise the references and predictions in the eval WER calculation."
|
|
},
|
|
)
|
|
language: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
|
|
"only. For English speech recognition, it should be set to `None`."
|
|
)
|
|
},
|
|
)
|
|
task: str = field(
|
|
default="transcribe",
|
|
metadata={
|
|
"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
|
|
},
|
|
)
|
|
shuffle_buffer_size: Optional[int] = field(
|
|
default=500,
|
|
metadata={
|
|
"help": (
|
|
"The number of streamed examples to download before shuffling them. The large the buffer, "
|
|
"the closer it is to real offline shuffling."
|
|
)
|
|
},
|
|
)
|
|
streaming: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Whether to use streaming mode to load and pre-process the data."
|
|
},
|
|
)
|
|
stopping_strategy: str = field(
|
|
default="first_exhausted",
|
|
metadata={
|
|
"help": "Stopping strategy for interleving data, either `first_exhausted` or `all_exhausted `."
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorSpeechSeq2SeqWithPadding:
|
|
"""
|
|
Data collator that will dynamically pad the inputs received.
|
|
Args:
|
|
processor ([`WhisperProcessor`])
|
|
The processor used for processing the data.
|
|
decoder_start_token_id (`int`)
|
|
The begin-of-sentence of the decoder.
|
|
"""
|
|
|
|
processor: Any
|
|
decoder_start_token_id: int
|
|
|
|
def __call__(
|
|
self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
|
|
) -> Dict[str, torch.Tensor]:
|
|
|
|
|
|
model_input_name = self.processor.model_input_names[0]
|
|
input_features = [
|
|
{model_input_name: feature[model_input_name]} for feature in features
|
|
]
|
|
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
|
|
|
batch = self.processor.feature_extractor.pad(
|
|
input_features, return_tensors="pt"
|
|
)
|
|
|
|
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
|
|
|
|
|
labels = labels_batch["input_ids"].masked_fill(
|
|
labels_batch.attention_mask.ne(1), -100
|
|
)
|
|
|
|
|
|
|
|
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
|
|
labels = labels[:, 1:]
|
|
|
|
batch["labels"] = labels
|
|
|
|
return batch
|
|
|
|
|
|
def load_maybe_streaming_dataset(
|
|
dataset_name, dataset_config_name, split="train", streaming=True, **kwargs
|
|
):
|
|
"""
|
|
Utility function to load a dataset in streaming mode. For datasets with multiple splits,
|
|
each split is loaded individually and then splits combined by taking alternating examples from
|
|
each (interleaving).
|
|
"""
|
|
if "+" in split:
|
|
|
|
dataset_splits = [
|
|
load_dataset(
|
|
dataset_name,
|
|
dataset_config_name,
|
|
split=split_name,
|
|
streaming=streaming,
|
|
**kwargs,
|
|
)
|
|
for split_name in split.split("+")
|
|
]
|
|
|
|
interleaved_dataset = interleave_datasets(dataset_splits)
|
|
return interleaved_dataset
|
|
else:
|
|
|
|
dataset = load_dataset(
|
|
dataset_name,
|
|
dataset_config_name,
|
|
split=split,
|
|
streaming=streaming,
|
|
**kwargs,
|
|
)
|
|
return dataset
|
|
|
|
def load_multiple_streaming_datasets(
|
|
dataset_names: List,
|
|
dataset_config_names: List,
|
|
splits: Optional[List] = None,
|
|
text_column_names: Optional[List] = None,
|
|
sampling_rate: Optional[int] = 16000,
|
|
stopping_strategy: Optional[str] = "first_exhausted",
|
|
**kwargs
|
|
) -> IterableDataset:
|
|
|
|
if len(dataset_names) != len(dataset_config_names):
|
|
raise ValueError(
|
|
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
|
|
f" {len(dataset_config_names)} configs."
|
|
)
|
|
|
|
if splits is not None and len(splits) != len(dataset_names):
|
|
raise ValueError(
|
|
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
|
|
)
|
|
|
|
if text_column_names is not None and len(text_column_names) != len(dataset_names):
|
|
raise ValueError(
|
|
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
|
f" {len(text_column_names)} text column names."
|
|
)
|
|
|
|
splits = splits if splits is not None else ["train" for i in range(len(dataset_names))]
|
|
text_column_names = (
|
|
text_column_names if text_column_names is not None else ["text" for i in range(len(dataset_names))]
|
|
)
|
|
|
|
all_datasets = []
|
|
|
|
for i, dataset_name in enumerate(dataset_names):
|
|
for dsplit in splits[i].split("+"):
|
|
dataset = load_dataset(dataset_name, dataset_config_names[i], split=dsplit, streaming=True, **kwargs)
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate))
|
|
|
|
if text_column_names[i] != "sentence":
|
|
dataset = dataset.rename_column(text_column_names[i], "sentence")
|
|
dataset = dataset.remove_columns(set(dataset.features.keys()) - set(["audio", "sentence"]))
|
|
all_datasets.append(dataset)
|
|
interleaved_dataset = interleave_datasets(all_datasets, stopping_strategy=stopping_strategy)
|
|
return interleaved_dataset
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser(
|
|
(ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)
|
|
)
|
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(
|
|
json_file=os.path.abspath(sys.argv[1])
|
|
)
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
|
|
|
|
send_example_telemetry(
|
|
"run_speech_recognition_seq2seq_streaming", model_args, data_args
|
|
)
|
|
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
logger.setLevel(
|
|
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
|
|
)
|
|
|
|
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
|
|
last_checkpoint = None
|
|
if (
|
|
os.path.isdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif (
|
|
last_checkpoint is not None and training_args.resume_from_checkpoint is None
|
|
):
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
|
|
set_seed(training_args.seed)
|
|
|
|
|
|
raw_datasets = IterableDatasetDict()
|
|
|
|
if training_args.do_train:
|
|
raw_datasets["train"] = load_multiple_streaming_datasets(
|
|
data_args.dataset_name.split("|"),
|
|
dataset_config_names=data_args.dataset_config_name.split("|"),
|
|
text_column_names=data_args.text_column_name.split("|"),
|
|
splits=data_args.train_split_name.split("|"),
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
stopping_strategy=data_args.stopping_strategy,
|
|
)
|
|
|
|
|
|
if training_args.do_eval:
|
|
raw_datasets["eval"] = load_multiple_streaming_datasets(
|
|
data_args.dataset_name.split("|"),
|
|
dataset_config_names=data_args.dataset_config_name.split("|"),
|
|
text_column_names=data_args.text_column_name.split("|"),
|
|
splits=data_args.eval_split_name.split("|"),
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
stopping_strategy=data_args.stopping_strategy,
|
|
)
|
|
|
|
raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
|
|
|
|
if data_args.audio_column_name not in raw_datasets_features:
|
|
raise ValueError(
|
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
|
f"{', '.join(raw_datasets_features)}."
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name
|
|
if model_args.config_name
|
|
else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
config.update(
|
|
{
|
|
"forced_decoder_ids": model_args.forced_decoder_ids,
|
|
"suppress_tokens": model_args.suppress_tokens,
|
|
}
|
|
)
|
|
|
|
if training_args.gradient_checkpointing:
|
|
config.update({"use_cache": False})
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
model_args.feature_extractor_name
|
|
if model_args.feature_extractor_name
|
|
else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name
|
|
if model_args.tokenizer_name
|
|
else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
if model.config.decoder_start_token_id is None:
|
|
raise ValueError(
|
|
"Make sure that `config.decoder_start_token_id` is correctly defined"
|
|
)
|
|
|
|
max_label_length = model.config.max_length
|
|
|
|
if model_args.freeze_feature_encoder:
|
|
model.freeze_feature_encoder()
|
|
|
|
if model_args.freeze_encoder:
|
|
model.freeze_encoder()
|
|
model.model.encoder.gradient_checkpointing = False
|
|
|
|
if data_args.language is not None:
|
|
|
|
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task)
|
|
|
|
|
|
dataset_sampling_rate = (
|
|
next(iter(raw_datasets.values()))
|
|
.features[data_args.audio_column_name]
|
|
.sampling_rate
|
|
)
|
|
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
|
raw_datasets = raw_datasets.cast_column(
|
|
data_args.audio_column_name,
|
|
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
|
|
)
|
|
|
|
|
|
|
|
max_input_length = (
|
|
data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
|
)
|
|
min_input_length = (
|
|
data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
|
)
|
|
audio_column_name = data_args.audio_column_name
|
|
|
|
text_column_name = "sentence"
|
|
model_input_name = feature_extractor.model_input_names[0]
|
|
do_lower_case = data_args.do_lower_case
|
|
do_remove_punctuation = data_args.do_remove_punctuation
|
|
normalizer = BasicTextNormalizer()
|
|
|
|
if data_args.max_train_samples is not None:
|
|
raw_datasets["train"] = raw_datasets["train"].take(data_args.max_train_samples)
|
|
|
|
if data_args.max_eval_samples is not None:
|
|
raw_datasets["eval"] = raw_datasets["eval"].select(
|
|
range(data_args.max_eval_samples)
|
|
)
|
|
|
|
def prepare_dataset(batch):
|
|
|
|
sample = batch[audio_column_name]
|
|
inputs = feature_extractor(
|
|
sample["array"], sampling_rate=sample["sampling_rate"]
|
|
)
|
|
|
|
batch[model_input_name] = inputs.get(model_input_name)[0]
|
|
batch["input_length"] = len(sample["array"])
|
|
|
|
|
|
input_str = (
|
|
batch[text_column_name].lower()
|
|
if do_lower_case
|
|
else batch[text_column_name]
|
|
)
|
|
if do_remove_punctuation:
|
|
input_str = normalizer(input_str).strip()
|
|
batch["labels"] = tokenizer(input_str).input_ids
|
|
return batch
|
|
|
|
with training_args.main_process_first(desc="dataset map pre-processing"):
|
|
vectorized_datasets = raw_datasets.map(
|
|
prepare_dataset,
|
|
remove_columns=raw_datasets_features,
|
|
).with_format("torch")
|
|
|
|
if training_args.do_train:
|
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
|
|
buffer_size=data_args.shuffle_buffer_size,
|
|
seed=training_args.seed,
|
|
)
|
|
|
|
|
|
|
|
def is_audio_in_length_range(length):
|
|
return min_input_length < length < max_input_length
|
|
|
|
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
|
|
is_audio_in_length_range,
|
|
input_columns=["input_length"],
|
|
)
|
|
|
|
def filter_labels(labels):
|
|
"""Filter label sequences longer than max length"""
|
|
return len(labels) < max_label_length
|
|
|
|
vectorized_datasets = vectorized_datasets.filter(
|
|
filter_labels, input_columns=["labels"]
|
|
)
|
|
|
|
|
|
metric = evaluate.load("wer")
|
|
do_normalize_eval = data_args.do_normalize_eval
|
|
|
|
def compute_metrics(pred):
|
|
pred_ids = pred.predictions
|
|
|
|
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
|
|
|
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
|
|
|
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
|
|
|
|
if do_normalize_eval:
|
|
pred_str = [normalizer(pred) for pred in pred_str]
|
|
label_str = [normalizer(label) for label in label_str]
|
|
|
|
pred_str = [
|
|
pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0
|
|
]
|
|
label_str = [
|
|
label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0
|
|
]
|
|
|
|
wer = 100 * metric.compute(predictions=pred_str, references=label_str)
|
|
|
|
return {"wer": wer}
|
|
|
|
|
|
if is_main_process(training_args.local_rank):
|
|
|
|
feature_extractor.save_pretrained(training_args.output_dir)
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
config.save_pretrained(training_args.output_dir)
|
|
|
|
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
|
|
|
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
|
processor=processor,
|
|
decoder_start_token_id=model.config.decoder_start_token_id,
|
|
)
|
|
|
|
|
|
|
|
|
|
class ShuffleCallback(TrainerCallback):
|
|
def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
|
|
if isinstance(train_dataloader.dataset, IterableDatasetShard):
|
|
pass
|
|
elif isinstance(train_dataloader.dataset, IterableDataset):
|
|
train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
|
|
|
|
|
|
trainer = Seq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
|
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
|
tokenizer=feature_extractor,
|
|
data_collator=data_collator,
|
|
compute_metrics=compute_metrics
|
|
if training_args.predict_with_generate
|
|
else None,
|
|
callbacks=[ShuffleCallback()],
|
|
)
|
|
|
|
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
|
|
metrics = train_result.metrics
|
|
if data_args.max_train_samples:
|
|
metrics["train_samples"] = data_args.max_train_samples
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate(
|
|
metric_key_prefix="eval",
|
|
max_length=training_args.generation_max_length,
|
|
num_beams=training_args.generation_num_beams,
|
|
)
|
|
if data_args.max_eval_samples:
|
|
metrics["eval_samples"] = data_args.max_eval_samples
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
|
|
kwargs = {
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"tasks": "automatic-speech-recognition",
|
|
"tags": "whisper-event",
|
|
}
|
|
if data_args.dataset_name is not None:
|
|
kwargs["dataset_tags"] = data_args.dataset_name
|
|
if data_args.dataset_config_name is not None:
|
|
kwargs[
|
|
"dataset"
|
|
] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
|
else:
|
|
kwargs["dataset"] = data_args.dataset_name
|
|
if "common_voice" in data_args.dataset_name:
|
|
kwargs["language"] = data_args.dataset_config_name[:2]
|
|
if model_args.model_index_name is not None:
|
|
kwargs["model_name"] = model_args.model_index_name
|
|
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|