Update src/pipeline.py
Browse files- src/pipeline.py +15 -12
src/pipeline.py
CHANGED
@@ -577,10 +577,8 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|
577 |
torch.backends.cudnn.enabled = True
|
578 |
torch.backends.cudnn.benchmark = True
|
579 |
|
580 |
-
|
581 |
-
|
582 |
-
ckpt_id = "silentdriver/4b68f38c0b"
|
583 |
-
ckpt_revision = "36a3cf4a9f733fc5f31257099b56b304fb2eceab"
|
584 |
def empty_cache():
|
585 |
gc.collect()
|
586 |
torch.cuda.empty_cache()
|
@@ -591,36 +589,41 @@ def load_pipeline() -> Pipeline:
|
|
591 |
empty_cache()
|
592 |
|
593 |
dtype, device = torch.bfloat16, "cuda"
|
|
|
|
|
|
|
|
|
594 |
|
595 |
text_encoder_2 = T5EncoderModel.from_pretrained(
|
596 |
"city96/t5-v1_1-xxl-encoder-bf16", revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86", torch_dtype=torch.bfloat16
|
597 |
).to(memory_format=torch.channels_last)
|
598 |
-
|
599 |
-
|
|
|
|
|
|
|
600 |
vae = AutoencoderTiny.from_pretrained("RobertML/FLUX.1-schnell-vae_e3m2", revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d", torch_dtype=dtype)
|
601 |
|
602 |
-
path = os.path.join(HF_HUB_CACHE, "models--
|
603 |
generator = torch.Generator(device=device)
|
604 |
model = FluxTransformer2DModel.from_pretrained(path, torch_dtype=dtype, use_safetensors=False, generator= generator).to(memory_format=torch.channels_last)
|
605 |
torch.backends.cudnn.benchmark = True
|
606 |
torch.backends.cudnn.deterministic = False
|
607 |
-
|
608 |
-
# model = torch.compile(model,backend="aot_eager")
|
609 |
-
vae = torch.compile(vae)
|
610 |
pipeline = DiffusionPipeline.from_pretrained(
|
611 |
ckpt_id,
|
|
|
612 |
vae=vae,
|
613 |
revision=ckpt_revision,
|
614 |
transformer=model,
|
615 |
text_encoder_2=text_encoder_2,
|
616 |
torch_dtype=dtype,
|
617 |
).to(device)
|
|
|
618 |
pipeline.vae.requires_grad_(False)
|
619 |
pipeline.transformer.requires_grad_(False)
|
620 |
pipeline.text_encoder_2.requires_grad_(False)
|
621 |
pipeline.text_encoder.requires_grad_(False)
|
622 |
-
|
623 |
-
# pipeline.enable_sequential_cpu_offload(exclude=["transformer"])
|
624 |
|
625 |
for _ in range(3):
|
626 |
pipeline(prompt="blah blah waah waah oneshot oneshot gang gang", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
|
|
577 |
torch.backends.cudnn.enabled = True
|
578 |
torch.backends.cudnn.benchmark = True
|
579 |
|
580 |
+
ckpt_id = "black-forest-labs/FLUX.1-schnell"
|
581 |
+
ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
|
|
|
|
582 |
def empty_cache():
|
583 |
gc.collect()
|
584 |
torch.cuda.empty_cache()
|
|
|
589 |
empty_cache()
|
590 |
|
591 |
dtype, device = torch.bfloat16, "cuda"
|
592 |
+
|
593 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
594 |
+
ckpt_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
|
595 |
+
)
|
596 |
|
597 |
text_encoder_2 = T5EncoderModel.from_pretrained(
|
598 |
"city96/t5-v1_1-xxl-encoder-bf16", revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86", torch_dtype=torch.bfloat16
|
599 |
).to(memory_format=torch.channels_last)
|
600 |
+
|
601 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
602 |
+
os.path.join(HF_HUB_CACHE, "models--manbeast3b--FLUX.1-schnell-te1/snapshots/05ac3e466d6b42b7794859560d875b25f6df5daf"), subfolder="text_encoder", torch_dtype=torch.bfloat16
|
603 |
+
).to(memory_format=torch.channels_last)
|
604 |
+
|
605 |
vae = AutoencoderTiny.from_pretrained("RobertML/FLUX.1-schnell-vae_e3m2", revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d", torch_dtype=dtype)
|
606 |
|
607 |
+
path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--FLUX.1-schnell-transformer-f8/snapshots/2ac0d29a2f3a00175fd638e82e8acaa4ddcbfd09")
|
608 |
generator = torch.Generator(device=device)
|
609 |
model = FluxTransformer2DModel.from_pretrained(path, torch_dtype=dtype, use_safetensors=False, generator= generator).to(memory_format=torch.channels_last)
|
610 |
torch.backends.cudnn.benchmark = True
|
611 |
torch.backends.cudnn.deterministic = False
|
612 |
+
|
|
|
|
|
613 |
pipeline = DiffusionPipeline.from_pretrained(
|
614 |
ckpt_id,
|
615 |
+
text_encoder=text_encoder,
|
616 |
vae=vae,
|
617 |
revision=ckpt_revision,
|
618 |
transformer=model,
|
619 |
text_encoder_2=text_encoder_2,
|
620 |
torch_dtype=dtype,
|
621 |
).to(device)
|
622 |
+
pipeline.vae = torch.compile(pipeline.vae)
|
623 |
pipeline.vae.requires_grad_(False)
|
624 |
pipeline.transformer.requires_grad_(False)
|
625 |
pipeline.text_encoder_2.requires_grad_(False)
|
626 |
pipeline.text_encoder.requires_grad_(False)
|
|
|
|
|
627 |
|
628 |
for _ in range(3):
|
629 |
pipeline(prompt="blah blah waah waah oneshot oneshot gang gang", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|