|
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from huggingface_hub.constants import HF_HUB_CACHE |
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel |
|
import torch |
|
import torch._dynamo |
|
import gc |
|
from PIL import Image as img |
|
from PIL.Image import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
import time |
|
from diffusers import DiffusionPipeline |
|
from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only |
|
import os |
|
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" |
|
|
|
import torch |
|
import math |
|
from typing import Type, Dict, Any, Tuple, Callable, Optional, Union |
|
import ghanta |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin |
|
from diffusers.models.attention import FeedForward |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttentionProcessor, |
|
FluxAttnProcessor2_0, |
|
FusedFluxAttnProcessor2_0, |
|
) |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle |
|
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers |
|
from diffusers.utils.import_utils import is_torch_npu_available |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
|
|
class BasicQuantization: |
|
def __init__(self, bits=1): |
|
self.bits = bits |
|
self.qmin = -(2**(bits-1)) |
|
self.qmax = 2**(bits-1) - 1 |
|
|
|
def quantize_tensor(self, tensor): |
|
scale = (tensor.max() - tensor.min()) / (self.qmax - self.qmin) |
|
zero_point = self.qmin - torch.round(tensor.min() / scale) |
|
qtensor = torch.round(tensor / scale + zero_point) |
|
qtensor = torch.clamp(qtensor, self.qmin, self.qmax) |
|
return (qtensor - zero_point) * scale, scale, zero_point |
|
|
|
class ModelQuantization: |
|
def __init__(self, model, bits=7): |
|
self.model = model |
|
self.quant = BasicQuantization(bits) |
|
|
|
def quantize_model(self): |
|
for name, module in self.model.named_modules(): |
|
if isinstance(module, torch.nn.Linear): |
|
if hasattr(module, 'weightML'): |
|
quantized_weight, _, _ = self.quant.quantize_tensor(module.weight) |
|
module.weight = torch.nn.Parameter(quantized_weight) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
quantized_bias, _, _ = self.quant.quantize_tensor(module.bias) |
|
module.bias = torch.nn.Parameter(quantized_bias) |
|
|
|
|
|
def inicializar_generador(dispositivo: torch.device, respaldo: torch.Generator = None): |
|
if dispositivo.type == "cpu": |
|
return torch.Generator(device="cpu").set_state(torch.get_rng_state()) |
|
elif dispositivo.type == "cuda": |
|
return torch.Generator(device=dispositivo).set_state(torch.cuda.get_rng_state()) |
|
else: |
|
if respaldo is None: |
|
return inicializar_generador(torch.device("cpu")) |
|
else: |
|
return respaldo |
|
|
|
def calcular_fusion(x: torch.Tensor, info_tome: Dict[str, Any]) -> Tuple[Callable, ...]: |
|
alto_original, ancho_original = info_tome["size"] |
|
tokens_originales = alto_original * ancho_original |
|
submuestreo = int(math.ceil(math.sqrt(tokens_originales // x.shape[1]))) |
|
argumentos = info_tome["args"] |
|
if submuestreo <= argumentos["down"]: |
|
ancho = int(math.ceil(ancho_original / submuestreo)) |
|
alto = int(math.ceil(alto_original / submuestreo)) |
|
radio = int(x.shape[1] * argumentos["ratio"]) |
|
|
|
if argumentos["generator"] is None: |
|
argumentos["generator"] = inicializar_generador(x.device) |
|
elif argumentos["generator"].device != x.device: |
|
argumentos["generator"] = inicializar_generador(x.device, respaldo=argumentos["generator"]) |
|
|
|
usar_aleatoriedad = argumentos["rando"] |
|
fusion, desfusion = ghanta.emparejamiento_suave_aleatorio_2d( |
|
x, ancho, alto, argumentos["sx"], argumentos["sy"], radio, |
|
sin_aleatoriedad=not usar_aleatoriedad, generador=argumentos["generator"] |
|
) |
|
else: |
|
fusion, desfusion = (hacer_nada, hacer_nada) |
|
fusion_a, desfusion_a = (fusion, desfusion) if argumentos["m1"] else (hacer_nada, hacer_nada) |
|
fusion_c, desfusion_c = (fusion, desfusion) if argumentos["m2"] else (hacer_nada, hacer_nada) |
|
fusion_m, desfusion_m = (fusion, desfusion) if argumentos["m3"] else (hacer_nada, hacer_nada) |
|
return fusion_a, fusion_c, fusion_m, desfusion_a, desfusion_c, desfusion_m |
|
|
|
@torch.compile |
|
@maybe_allow_in_graph |
|
class FluxSingleTransformerBlock(nn.Module): |
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): |
|
super().__init__() |
|
self.mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
|
self.norm = AdaLayerNormZeroSingle(dim) |
|
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) |
|
self.act_mlp = nn.GELU(approximate="tanh") |
|
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) |
|
|
|
processor = FluxAttnProcessor2_0() |
|
self.attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
bias=True, |
|
processor=processor, |
|
qk_norm="rms_norm", |
|
eps=1e-6, |
|
pre_only=True, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: torch.FloatTensor, |
|
image_rotary_emb=None, |
|
joint_attention_kwargs=None, |
|
tinfo: Dict[str, Any] = None, |
|
): |
|
if tinfo is not None: |
|
m_a, m_c, mom, u_a, u_c, u_m = calcular_fusion(hidden_states, tinfo) |
|
else: |
|
m_a, m_c, mom, u_a, u_c, u_m = (ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada) |
|
|
|
residual = hidden_states |
|
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) |
|
norm_hidden_states = m_a(norm_hidden_states) |
|
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) |
|
joint_attention_kwargs = joint_attention_kwargs or {} |
|
attn_output = self.attn( |
|
hidden_states=norm_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
**joint_attention_kwargs, |
|
) |
|
|
|
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) |
|
gate = gate.unsqueeze(1) |
|
hidden_states = gate * self.proj_out(hidden_states) |
|
hidden_states = u_a(residual + hidden_states) |
|
|
|
return hidden_states |
|
|
|
@torch.compile |
|
@maybe_allow_in_graph |
|
class FluxTransformerBlock(nn.Module): |
|
|
|
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6): |
|
super().__init__() |
|
|
|
self.norm1 = AdaLayerNormZero(dim) |
|
|
|
self.norm1_context = AdaLayerNormZero(dim) |
|
|
|
if hasattr(F, "scaled_dot_product_attention"): |
|
processor = FluxAttnProcessor2_0() |
|
else: |
|
raise ValueError( |
|
"The current PyTorch version does not support the `scaled_dot_product_attention` function." |
|
) |
|
self.attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
added_kv_proj_dim=dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
out_dim=dim, |
|
context_pre_only=False, |
|
bias=True, |
|
processor=processor, |
|
qk_norm=qk_norm, |
|
eps=eps, |
|
) |
|
|
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) |
|
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") |
|
|
|
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) |
|
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") |
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor, |
|
temb: torch.FloatTensor, |
|
image_rotary_emb=None, |
|
joint_attention_kwargs=None, |
|
tinfo: Dict[str, Any] = None, |
|
): |
|
if tinfo is not None: |
|
m_a, m_c, mom, u_a, u_c, u_m = calcular_fusion(hidden_states, tinfo) |
|
else: |
|
m_a, m_c, mom, u_a, u_c, u_m = (ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada) |
|
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) |
|
|
|
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( |
|
encoder_hidden_states, emb=temb |
|
) |
|
joint_attention_kwargs = joint_attention_kwargs or {} |
|
norm_hidden_states = m_a(norm_hidden_states) |
|
norm_encoder_hidden_states = m_c(norm_encoder_hidden_states) |
|
|
|
attn_output, context_attn_output = self.attn( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
**joint_attention_kwargs, |
|
) |
|
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = u_a(attn_output) + hidden_states |
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
norm_hidden_states = mom(norm_hidden_states) |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = u_m(ff_output) + hidden_states |
|
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output |
|
encoder_hidden_states = u_c(context_attn_output) + encoder_hidden_states |
|
|
|
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) |
|
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] |
|
|
|
context_ff_output = self.ff_context(norm_encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output |
|
|
|
return encoder_hidden_states, hidden_states |
|
|
|
class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
patch_size: int = 1, |
|
in_channels: int = 64, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 19, |
|
num_single_layers: int = 38, |
|
attention_head_dim: int = 128, |
|
num_attention_heads: int = 24, |
|
joint_attention_dim: int = 4096, |
|
pooled_projection_dim: int = 768, |
|
guidance_embeds: bool = False, |
|
axes_dims_rope: Tuple[int] = (16, 56, 56), |
|
generator: Optional[torch.Generator] = None, |
|
): |
|
super().__init__() |
|
self.out_channels = out_channels or in_channels |
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim |
|
|
|
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) |
|
|
|
text_time_guidance_cls = ( |
|
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings |
|
) |
|
self.time_text_embed = text_time_guidance_cls( |
|
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim |
|
) |
|
|
|
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) |
|
self.x_embedder = nn.Linear(self.config.in_channels, self.inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.config.num_attention_heads, |
|
attention_head_dim=self.config.attention_head_dim, |
|
) |
|
for i in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
self.single_transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxSingleTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.config.num_attention_heads, |
|
attention_head_dim=self.config.attention_head_dim, |
|
) |
|
for i in range(self.config.num_single_layers) |
|
] |
|
) |
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) |
|
ratio: float = 0.5 |
|
down: int = 1 |
|
sx: int = 2 |
|
sy: int = 2 |
|
rando: bool = False |
|
m1: bool = False |
|
m2: bool = True |
|
m3: bool = False |
|
|
|
self.tinfo = { |
|
"size": None, |
|
"args": { |
|
"ratio": ratio, |
|
"down": down, |
|
"sx": sx, |
|
"sy": sy, |
|
"rando": rando, |
|
"m1": m1, |
|
"m2": m2, |
|
"m3": m3, |
|
"generator": generator |
|
} |
|
} |
|
|
|
self.gradient_checkpointing = False |
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
self.set_attn_processor(FusedFluxAttnProcessor2_0()) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor = None, |
|
pooled_projections: torch.Tensor = None, |
|
timestep: torch.LongTensor = None, |
|
img_ids: torch.Tensor = None, |
|
txt_ids: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_block_samples=None, |
|
controlnet_single_block_samples=None, |
|
return_dict: bool = True, |
|
controlnet_blocks_repeat: bool = False, |
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: |
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
hidden_states = self.x_embedder(hidden_states) |
|
if len(hidden_states.shape) == 4: |
|
self.tinfo["size"] = (hidden_states.shape[2], hidden_states.shape[3]) |
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
if guidance is not None: |
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
else: |
|
guidance = None |
|
|
|
temb = ( |
|
self.time_text_embed(timestep, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
if txt_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `txt_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
txt_ids = txt_ids[0] |
|
if img_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `img_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
img_ids = img_ids[0] |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
image_rotary_emb = self.pos_embed(ids) |
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
if controlnet_block_samples is not None: |
|
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
if controlnet_blocks_repeat: |
|
hidden_states = ( |
|
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] |
|
) |
|
else: |
|
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] |
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
) |
|
|
|
if controlnet_single_block_samples is not None: |
|
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
+ controlnet_single_block_samples[index_block // interval_control] |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
output = self.proj_out(hidden_states) |
|
|
|
if USE_PEFT_BACKEND: |
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|
def load_single_file_checkpoint( |
|
pretrained_model_link_or_path, |
|
force_download=False, |
|
proxies=None, |
|
token=None, |
|
cache_dir=None, |
|
local_files_only=None, |
|
revision=None, |
|
): |
|
import pdb; pdb.set_trace() |
|
if os.path.isfile(pretrained_model_link_or_path): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path |
|
|
|
else: |
|
repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path) |
|
pretrained_model_link_or_path = _get_model_file( |
|
repo_id, |
|
weights_name=weights_name, |
|
force_download=force_download, |
|
cache_dir=cache_dir, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
) |
|
import pdb; pdb.set_trace() |
|
|
|
checkpoint = load_state_dict(pretrained_model_link_or_path) |
|
|
|
|
|
while "state_dict" in checkpoint: |
|
checkpoint = checkpoint["state_dict"] |
|
|
|
return checkpoint |
|
|
|
|
|
Pipeline = None |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.enabled = True |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
|
|
ckpt_id = "silentdriver/4b68f38c0b" |
|
ckpt_revision = "36a3cf4a9f733fc5f31257099b56b304fb2eceab" |
|
def empty_cache(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
def load_pipeline() -> Pipeline: |
|
empty_cache() |
|
|
|
|
|
dtype, device = torch.bfloat16, "cuda" |
|
|
|
import pdb; pdb.set_trace() |
|
|
|
|
|
|
|
|
|
|
|
|
|
text_encoder_2 = T5EncoderModel.from_pretrained( |
|
"silentdriver/aadb864af9", revision = "060dabc7fa271c26dfa3fd43c16e7c5bf3ac7892", torch_dtype=torch.bfloat16 |
|
).to(memory_format=torch.channels_last) |
|
|
|
|
|
|
|
vae = AutoencoderTiny.from_pretrained("silentdriver/7815792fb4", revision="bdb7d88ebe5a1c6b02a3c0c78651dd57a403fdf5", torch_dtype=dtype) |
|
|
|
path = os.path.join(HF_HUB_CACHE, "models--silentdriver--7d92df966a/snapshots/add1b8d9a84c728c1209448c4a695759240bad3c") |
|
generator = torch.Generator(device=device) |
|
model = FluxTransformer2DModel.from_pretrained(path, torch_dtype=dtype, use_safetensors=False, generator= generator).to(memory_format=torch.channels_last) |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cudnn.deterministic = False |
|
|
|
|
|
vae = torch.compile(vae) |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
ckpt_id, |
|
vae=vae, |
|
revision=ckpt_revision, |
|
transformer=model, |
|
text_encoder_2=text_encoder_2, |
|
torch_dtype=dtype, |
|
).to(device) |
|
pipeline.vae.requires_grad_(False) |
|
pipeline.transformer.requires_grad_(False) |
|
pipeline.text_encoder_2.requires_grad_(False) |
|
pipeline.text_encoder.requires_grad_(False) |
|
|
|
|
|
|
|
for _ in range(3): |
|
pipeline(prompt="blah blah waah waah oneshot oneshot gang gang", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) |
|
|
|
empty_cache() |
|
return pipeline |
|
|
|
|
|
@torch.no_grad() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image: |
|
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] |
|
return image |