manbeast3b commited on
Commit
29527dc
·
verified ·
1 Parent(s): 042b6f9

Update src/pipeline.py

Browse files
Files changed (1) hide show
  1. src/pipeline.py +3 -3
src/pipeline.py CHANGED
@@ -22,10 +22,10 @@ ckpt_revision = "cb1b599b0d712b9aab2c4df3ad27b050a27ec146"
22
 
23
 
24
  def load_pipeline() -> Pipeline:
25
- path = os.path.join(HF_HUB_CACHE, "models--slobers--Flux.1.Schnella/snapshots/e34d670e44cecbbc90e4962e7aada2ac5ce8b55b/transformer")
26
  transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16, use_safetensors=False)
27
  pipeline = FluxPipeline.from_pretrained(ckpt_id, revision=ckpt_revision, transformer=transformer, local_files_only=True, torch_dtype=torch.bfloat16,)
28
-
29
  pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
30
  # basepath = os.path.join(HF_HUB_CACHE, "models--manbeast3b--Flux.1.schnell_eagle5_1_0.1_unst_7_2k/snapshots/b7a5ce1313327009093d3178220267d0cf669b76")
31
  # basepath = os.path.join(HF_HUB_CACHE, "models--manbeast3b--Flux.1.schnell_eagle5_1_0.1_unst_8/snapshots/3666a458a53e7dc83adfecb0bf955a0b4d575843")
@@ -34,7 +34,7 @@ def load_pipeline() -> Pipeline:
34
  # pipeline.vae.encoder.load_state_dict(torch.load(os.path.join(basepath, "encoder.pth")), strict=False)
35
  # pipeline.vae.decoder.load_state_dict(torch.load(os.path.join(basepath, "decoder.pth")), strict=False)
36
  quantize_(pipeline.vae, int8_weight_only())
37
- pipeline.to("cuda")
38
  for _ in range(3):
39
  pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
40
  return pipeline
 
22
 
23
 
24
  def load_pipeline() -> Pipeline:
25
+ path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--flux.1-schnell-full1/snapshots/cb1b599b0d712b9aab2c4df3ad27b050a27ec146/transformer")
26
  transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16, use_safetensors=False)
27
  pipeline = FluxPipeline.from_pretrained(ckpt_id, revision=ckpt_revision, transformer=transformer, local_files_only=True, torch_dtype=torch.bfloat16,)
28
+ pipeline.to("cuda")
29
  pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
30
  # basepath = os.path.join(HF_HUB_CACHE, "models--manbeast3b--Flux.1.schnell_eagle5_1_0.1_unst_7_2k/snapshots/b7a5ce1313327009093d3178220267d0cf669b76")
31
  # basepath = os.path.join(HF_HUB_CACHE, "models--manbeast3b--Flux.1.schnell_eagle5_1_0.1_unst_8/snapshots/3666a458a53e7dc83adfecb0bf955a0b4d575843")
 
34
  # pipeline.vae.encoder.load_state_dict(torch.load(os.path.join(basepath, "encoder.pth")), strict=False)
35
  # pipeline.vae.decoder.load_state_dict(torch.load(os.path.join(basepath, "decoder.pth")), strict=False)
36
  quantize_(pipeline.vae, int8_weight_only())
37
+
38
  for _ in range(3):
39
  pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
40
  return pipeline