manjunathainti commited on
Commit
dc278e4
·
verified ·
1 Parent(s): d81dfe2

Readme push

Browse files
Files changed (1) hide show
  1. README.md +45 -163
README.md CHANGED
@@ -1,199 +1,81 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags: [summarization, legal-documents, t5]
4
  ---
5
 
6
+ # Model Card for Fine-Tuned T5 Summarizer
 
 
 
7
 
8
+ This model is a fine-tuned version of the T5 base model, designed for summarizing legal texts into concise short and long summaries. It enables efficient processing of complex legal cases, facilitating quick insights and detailed analysis.
9
 
10
  ## Model Details
11
 
12
  ### Model Description
13
 
14
+ This is the model card for the fine-tuned T5 summarizer developed for legal case summaries. It has been specifically optimized to process long legal documents and generate two types of summaries:
15
+ - **Short Summaries:** Concise highlights for quick review.
16
+ - **Long Summaries:** Detailed insights for deeper analysis.
17
 
18
+ - **Developed by:** Manjunatha Inti
19
+ - **Funded by:** Self-funded
20
+ - **Shared by:** Manjunatha Inti
21
+ - **Model type:** Fine-tuned Transformer for Summarization
22
+ - **Language(s) (NLP):** English
23
+ - **License:** Apache 2.0
24
+ - **Finetuned from model:** T5-base
25
 
26
+ ### Model Sources
27
 
28
+ - **Repository:** [GitHub Repository URL to be added]
29
+ - **Demo:** [Colab Notebook to be added]
30
+ - **Model on Hugging Face:** [https://huggingface.co/manjunathainti/fine_tuned_t5_summarizer](https://huggingface.co/manjunathainti/fine_tuned_t5_summarizer)
 
 
31
 
32
  ## Uses
33
 
 
 
34
  ### Direct Use
35
 
36
+ The model can be directly used to summarize legal case texts. It works best with English legal documents.
37
 
38
+ ### Downstream Use
39
 
40
+ The model can be integrated into:
41
+ - Legal document management systems.
42
+ - AI tools for legal research and compliance.
 
 
43
 
44
  ### Out-of-Scope Use
45
 
46
+ - Use on non-legal documents without additional fine-tuning.
47
+ - Summarization in languages other than English.
 
48
 
49
  ## Bias, Risks, and Limitations
50
 
51
+ ### Bias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ The model may reflect biases present in the training data, such as jurisdictional focus or societal biases inherent in the dataset.
54
 
55
+ ### Risks
56
 
57
+ - Critical legal details might be omitted.
58
+ - The model's output should not replace expert legal opinions.
59
 
60
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ - Outputs should always be reviewed by a legal expert.
63
+ - Avoid using for legal tasks where complete precision is mandatory.
64
 
65
+ ## How to Get Started with the Model
66
 
67
+ ```python
68
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
69
 
70
+ model_name = "manjunathainti/fine_tuned_t5_summarizer"
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
72
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
73
 
74
+ # Example Input
75
+ input_text = "Insert a legal case description here."
76
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
77
 
78
+ # Generate Summary
79
+ summary_ids = model.generate(input_ids, max_length=150, num_beams=4, length_penalty=2.0)
80
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
81
+ print("Generated Summary:", summary)