manmyung commited on
Commit
482e343
·
1 Parent(s): 13946fa

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.88 +/- 0.21
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55c82f0eb007be549459c56b149c9447f968fed517c47f05b153e21a979dc1c8
3
+ size 108074
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e55fcb0a3b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e55fcb039c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1689493847571363562,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKSfUPv0XCbxQPiM/KSfUPv0XCbxQPiM/KSfUPv0XCbxQPiM/KSfUPv0XCbxQPiM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmbbHv49Kez0to+g+veTHvRaPmr9UwrA/VMc1PrGqvrvYkXi/j6VLvvisd76IBsS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAApJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTwpJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTwpJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTwpJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.41436127 -0.00836754 0.63766956]\n [ 0.41436127 -0.00836754 0.63766956]\n [ 0.41436127 -0.00836754 0.63766956]\n [ 0.41436127 -0.00836754 0.63766956]]",
38
+ "desired_goal": "[[-1.5602599 0.0613504 0.45436993]\n [-0.09760425 -1.2074916 1.3809304 ]\n [ 0.17751819 -0.00581869 -0.9709754 ]\n [-0.19887374 -0.24187076 -1.5314493 ]]",
39
+ "observation": "[[ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]\n [ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]\n [ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]\n [ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIfs9PLb3tz2gZyQ+ljkGvtw68L24pQo6u8Rqvdld2z1lBoE+7X0SvvmlkTyxbRQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.01159552 0.08982794 0.16055155]\n [-0.13107905 -0.11729977 0.0005289 ]\n [-0.05731652 0.10711259 0.2520019 ]\n [-0.1430585 0.01777934 0.14494969]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6WUUyy0t6L+UhpRSlIwBbJRLMowBdJRHQKb0+v2Xb/R1fZQoaAZoCWgPQwj7lGOyuP/mv5SGlFKUaBVLMmgWR0Cm9LwCbMHKdX2UKGgGaAloD0MIaoe/JmtU77+UhpRSlGgVSzJoFkdApvSD0rbxmXV9lChoBmgJaA9DCE8Cm3PwTPe/lIaUUpRoFUsyaBZHQKb0SNDMNc51fZQoaAZoCWgPQwjH9lrQe2Pmv5SGlFKUaBVLMmgWR0Cm9gOX/o7ndX2UKGgGaAloD0MIzJpY4Ct69r+UhpRSlGgVSzJoFkdApvXEnCwbEXV9lChoBmgJaA9DCB4Zq83/K+O/lIaUUpRoFUsyaBZHQKb1jIZIg/11fZQoaAZoCWgPQwg+JHzvb1Dpv5SGlFKUaBVLMmgWR0Cm9VF49ovjdX2UKGgGaAloD0MIViqoqPoV7L+UhpRSlGgVSzJoFkdApvcU5S3sonV9lChoBmgJaA9DCJvmHafoyO+/lIaUUpRoFUsyaBZHQKb21fyf+S91fZQoaAZoCWgPQwh15EhnYCTwv5SGlFKUaBVLMmgWR0Cm9p3iJfpmdX2UKGgGaAloD0MID5iHTPkQ7L+UhpRSlGgVSzJoFkdApvZijQAuI3V9lChoBmgJaA9DCJIf8SvWMPC/lIaUUpRoFUsyaBZHQKb4JkDIRyx1fZQoaAZoCWgPQwjJPV3dsVj1v5SGlFKUaBVLMmgWR0Cm9+ctPHktdX2UKGgGaAloD0MILa9cb5up6b+UhpRSlGgVSzJoFkdApveu9zwMIHV9lChoBmgJaA9DCDo+WpwxTPC/lIaUUpRoFUsyaBZHQKb3c6Zpi7V1fZQoaAZoCWgPQwjPhvwzg3jnv5SGlFKUaBVLMmgWR0Cm+TTbnHNpdX2UKGgGaAloD0MIi1OthVlo4r+UhpRSlGgVSzJoFkdApvj15D7ZWnV9lChoBmgJaA9DCB123zE89ua/lIaUUpRoFUsyaBZHQKb4vbnoxHp1fZQoaAZoCWgPQwjcLckBuxrxv5SGlFKUaBVLMmgWR0Cm+IJqIrOJdX2UKGgGaAloD0MIe4UF9wOe6r+UhpRSlGgVSzJoFkdApvq7XBguy3V9lChoBmgJaA9DCAyx+iMMg+W/lIaUUpRoFUsyaBZHQKb6fT2nKnx1fZQoaAZoCWgPQwgW9rTDXxPwv5SGlFKUaBVLMmgWR0Cm+kXtjTa1dX2UKGgGaAloD0MIsKw0KQWd87+UhpRSlGgVSzJoFkdApvoLiXIEKXV9lChoBmgJaA9DCH+jHTf87ue/lIaUUpRoFUsyaBZHQKb8eEi+tbN1fZQoaAZoCWgPQwgMzuDvF3Pyv5SGlFKUaBVLMmgWR0Cm/DoGQjlgdX2UKGgGaAloD0MIPZgUH58Q8L+UhpRSlGgVSzJoFkdApvwCkj5bhXV9lChoBmgJaA9DCBu8r8qFSu6/lIaUUpRoFUsyaBZHQKb7yBVdX1d1fZQoaAZoCWgPQwj8U6pE2dvwv5SGlFKUaBVLMmgWR0Cm/jotL+PzdX2UKGgGaAloD0MIdhiT/l6K7L+UhpRSlGgVSzJoFkdApv39XNke63V9lChoBmgJaA9DCLN8XYb/dPC/lIaUUpRoFUsyaBZHQKb9xjmSyMV1fZQoaAZoCWgPQwjtRbQdU7fzv5SGlFKUaBVLMmgWR0Cm/Yt7a7EpdX2UKGgGaAloD0MIrmUyHM9n9r+UhpRSlGgVSzJoFkdApwAHzasZHnV9lChoBmgJaA9DCPilft5UpO6/lIaUUpRoFUsyaBZHQKb/yZ4wAVB1fZQoaAZoCWgPQwhbW3heKrbsv5SGlFKUaBVLMmgWR0Cm/5JyQxN7dX2UKGgGaAloD0MIDkqYaftX7r+UhpRSlGgVSzJoFkdApv9YNqgyunV9lChoBmgJaA9DCJYlOssswuW/lIaUUpRoFUsyaBZHQKcB37TDwYt1fZQoaAZoCWgPQwh7ZkmAmtrrv5SGlFKUaBVLMmgWR0CnAaGkN4JNdX2UKGgGaAloD0MIJov7j0wH6b+UhpRSlGgVSzJoFkdApwFqde6ZpnV9lChoBmgJaA9DCFUS2QdZVvG/lIaUUpRoFUsyaBZHQKcBL4yGi6B1fZQoaAZoCWgPQwjrGi0Heijtv5SGlFKUaBVLMmgWR0CnA7OOsDGMdX2UKGgGaAloD0MIA+yjU1c+6L+UhpRSlGgVSzJoFkdApwN1xVAAyXV9lChoBmgJaA9DCIQSZtr+leO/lIaUUpRoFUsyaBZHQKcDPrFfiP11fZQoaAZoCWgPQwiLOJ1kq0vmv5SGlFKUaBVLMmgWR0CnAwRaxHG0dX2UKGgGaAloD0MIcXFUbqIW7b+UhpRSlGgVSzJoFkdApwVGTibUgHV9lChoBmgJaA9DCN6NBYVBmeq/lIaUUpRoFUsyaBZHQKcFB0ihWYF1fZQoaAZoCWgPQwhgVijS/Zzjv5SGlFKUaBVLMmgWR0CnBM81n/T9dX2UKGgGaAloD0MIFtwPeGCA57+UhpRSlGgVSzJoFkdApwSUHKOktXV9lChoBmgJaA9DCFSnA1lP7fG/lIaUUpRoFUsyaBZHQKcGSIYWLxZ1fZQoaAZoCWgPQwioNGJmn0fnv5SGlFKUaBVLMmgWR0CnBgmF8G9pdX2UKGgGaAloD0MIXFSLiGKy9b+UhpRSlGgVSzJoFkdApwXRT/ACXHV9lChoBmgJaA9DCA1QGmoUkui/lIaUUpRoFUsyaBZHQKcFlgb6xgR1fZQoaAZoCWgPQwjYuP5dnznrv5SGlFKUaBVLMmgWR0CnB0hkZrHmdX2UKGgGaAloD0MIAKjixi1m8r+UhpRSlGgVSzJoFkdApwcJkbxVhnV9lChoBmgJaA9DCBEAHHv2XOu/lIaUUpRoFUsyaBZHQKcG0URFqi51fZQoaAZoCWgPQwixpNx9jg/wv5SGlFKUaBVLMmgWR0CnBpXpwCKadX2UKGgGaAloD0MIlYCYhAt57L+UhpRSlGgVSzJoFkdApwhUZccENnV9lChoBmgJaA9DCCydD88S5PO/lIaUUpRoFUsyaBZHQKcIFVWCEpR1fZQoaAZoCWgPQwg/yLJg4g/qv5SGlFKUaBVLMmgWR0CnB90q6OHWdX2UKGgGaAloD0MIjgHZ690f7L+UhpRSlGgVSzJoFkdApweh3iaRZHV9lChoBmgJaA9DCANDVrd6zum/lIaUUpRoFUsyaBZHQKcJaoQ4CIV1fZQoaAZoCWgPQwj0+L1Nf/bhv5SGlFKUaBVLMmgWR0CnCSxmkFfRdX2UKGgGaAloD0MIUDQPYJFf4L+UhpRSlGgVSzJoFkdApwj1RUFSsXV9lChoBmgJaA9DCI8ZqIx/X/O/lIaUUpRoFUsyaBZHQKcIukVvddp1fZQoaAZoCWgPQwiX5esy/Kfgv5SGlFKUaBVLMmgWR0CnCnht+CsfdX2UKGgGaAloD0MI+5KNB1vs8L+UhpRSlGgVSzJoFkdApwo5YT0xunV9lChoBmgJaA9DCHWr56T3TfG/lIaUUpRoFUsyaBZHQKcKAUuctoV1fZQoaAZoCWgPQwgRrKqX36n2v5SGlFKUaBVLMmgWR0CnCcYFaB7NdX2UKGgGaAloD0MIXVK13QTf5b+UhpRSlGgVSzJoFkdApwuB26kIonV9lChoBmgJaA9DCJGb4QZ8fu2/lIaUUpRoFUsyaBZHQKcLQuJUHY91fZQoaAZoCWgPQwj3WWWmtP7rv5SGlFKUaBVLMmgWR0CnCwqtHQQddX2UKGgGaAloD0MIGjGzz2NU9r+UhpRSlGgVSzJoFkdApwrPVy3kP3V9lChoBmgJaA9DCDZ4X5ULFfW/lIaUUpRoFUsyaBZHQKcMlqIrOJN1fZQoaAZoCWgPQwgG1QYnoh/zv5SGlFKUaBVLMmgWR0CnDFeHaewtdX2UKGgGaAloD0MIjBNf7SjO3L+UhpRSlGgVSzJoFkdApwwfd43WF3V9lChoBmgJaA9DCCQO2UC62N2/lIaUUpRoFUsyaBZHQKcL5DBuXNV1fZQoaAZoCWgPQwiWIY51cZvwv5SGlFKUaBVLMmgWR0CnDaJO32EkdX2UKGgGaAloD0MI8MAAwocS6b+UhpRSlGgVSzJoFkdApw1jU/fO2XV9lChoBmgJaA9DCF2I1R9hGOO/lIaUUpRoFUsyaBZHQKcNKzoEB8x1fZQoaAZoCWgPQwgbvK/Khcrjv5SGlFKUaBVLMmgWR0CnDPABT4tZdX2UKGgGaAloD0MIMXiY9s3947+UhpRSlGgVSzJoFkdApw624gA6uHV9lChoBmgJaA9DCFdD4h5LH+2/lIaUUpRoFUsyaBZHQKcOd+ZPVNJ1fZQoaAZoCWgPQwimRX2SO2zpv5SGlFKUaBVLMmgWR0CnDj/LLZBcdX2UKGgGaAloD0MIcQD9vn9z5b+UhpRSlGgVSzJoFkdApw4EinpB5XV9lChoBmgJaA9DCJxSXiuhO+a/lIaUUpRoFUsyaBZHQKcPybxVhkR1fZQoaAZoCWgPQwi6gm3Ek93zv5SGlFKUaBVLMmgWR0CnD4syzolldX2UKGgGaAloD0MI8E+pEmVv7r+UhpRSlGgVSzJoFkdApw9TK9wm3XV9lChoBmgJaA9DCADirl5FxvW/lIaUUpRoFUsyaBZHQKcPF+z+m3x1fZQoaAZoCWgPQwgDd6BOefTtv5SGlFKUaBVLMmgWR0CnEMw3HaN/dX2UKGgGaAloD0MIC7Wmecdp8L+UhpRSlGgVSzJoFkdApxCNMEidKHV9lChoBmgJaA9DCFtfJLTlXOm/lIaUUpRoFUsyaBZHQKcQVP+GXX11fZQoaAZoCWgPQwg49BYP77nsv5SGlFKUaBVLMmgWR0CnEBnNHH3ldX2UKGgGaAloD0MInbtdL00R6b+UhpRSlGgVSzJoFkdApxHaqEOAiHV9lChoBmgJaA9DCB050hkYOfG/lIaUUpRoFUsyaBZHQKcRm5q/M4d1fZQoaAZoCWgPQwj0jH3JxkPwv5SGlFKUaBVLMmgWR0CnEWNlI3BIdX2UKGgGaAloD0MIZYuk3ehj6r+UhpRSlGgVSzJoFkdApxEoLiMo+nV9lChoBmgJaA9DCKJinL8JBeS/lIaUUpRoFUsyaBZHQKcS2SRr8BN1fZQoaAZoCWgPQwjmIr4Tsx7wv5SGlFKUaBVLMmgWR0CnEpo0hvBKdX2UKGgGaAloD0MIPfGcLSC08L+UhpRSlGgVSzJoFkdApxJiBy0a63V9lChoBmgJaA9DCGEzwAXZMua/lIaUUpRoFUsyaBZHQKcSJrhR64V1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a4b8bd7880b1b668fff83c956799fc06fea86369352f77c563da681081408ab
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982f797d48224a96c43116c2faf21b1fb2206ec046a18e9a5b2b6e5b3a9137dc
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e55fcb0a3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e55fcb039c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689493847571363562, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKSfUPv0XCbxQPiM/KSfUPv0XCbxQPiM/KSfUPv0XCbxQPiM/KSfUPv0XCbxQPiM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmbbHv49Kez0to+g+veTHvRaPmr9UwrA/VMc1PrGqvrvYkXi/j6VLvvisd76IBsS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAApJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTwpJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTwpJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTwpJ9Q+/RcJvFA+Iz+5+t28d19JvEVqRTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41436127 -0.00836754 0.63766956]\n [ 0.41436127 -0.00836754 0.63766956]\n [ 0.41436127 -0.00836754 0.63766956]\n [ 0.41436127 -0.00836754 0.63766956]]", "desired_goal": "[[-1.5602599 0.0613504 0.45436993]\n [-0.09760425 -1.2074916 1.3809304 ]\n [ 0.17751819 -0.00581869 -0.9709754 ]\n [-0.19887374 -0.24187076 -1.5314493 ]]", "observation": "[[ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]\n [ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]\n [ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]\n [ 0.41436127 -0.00836754 0.63766956 -0.02709709 -0.01229083 0.01204926]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIfs9PLb3tz2gZyQ+ljkGvtw68L24pQo6u8Rqvdld2z1lBoE+7X0SvvmlkTyxbRQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01159552 0.08982794 0.16055155]\n [-0.13107905 -0.11729977 0.0005289 ]\n [-0.05731652 0.10711259 0.2520019 ]\n [-0.1430585 0.01777934 0.14494969]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6WUUyy0t6L+UhpRSlIwBbJRLMowBdJRHQKb0+v2Xb/R1fZQoaAZoCWgPQwj7lGOyuP/mv5SGlFKUaBVLMmgWR0Cm9LwCbMHKdX2UKGgGaAloD0MIaoe/JmtU77+UhpRSlGgVSzJoFkdApvSD0rbxmXV9lChoBmgJaA9DCE8Cm3PwTPe/lIaUUpRoFUsyaBZHQKb0SNDMNc51fZQoaAZoCWgPQwjH9lrQe2Pmv5SGlFKUaBVLMmgWR0Cm9gOX/o7ndX2UKGgGaAloD0MIzJpY4Ct69r+UhpRSlGgVSzJoFkdApvXEnCwbEXV9lChoBmgJaA9DCB4Zq83/K+O/lIaUUpRoFUsyaBZHQKb1jIZIg/11fZQoaAZoCWgPQwg+JHzvb1Dpv5SGlFKUaBVLMmgWR0Cm9VF49ovjdX2UKGgGaAloD0MIViqoqPoV7L+UhpRSlGgVSzJoFkdApvcU5S3sonV9lChoBmgJaA9DCJvmHafoyO+/lIaUUpRoFUsyaBZHQKb21fyf+S91fZQoaAZoCWgPQwh15EhnYCTwv5SGlFKUaBVLMmgWR0Cm9p3iJfpmdX2UKGgGaAloD0MID5iHTPkQ7L+UhpRSlGgVSzJoFkdApvZijQAuI3V9lChoBmgJaA9DCJIf8SvWMPC/lIaUUpRoFUsyaBZHQKb4JkDIRyx1fZQoaAZoCWgPQwjJPV3dsVj1v5SGlFKUaBVLMmgWR0Cm9+ctPHktdX2UKGgGaAloD0MILa9cb5up6b+UhpRSlGgVSzJoFkdApveu9zwMIHV9lChoBmgJaA9DCDo+WpwxTPC/lIaUUpRoFUsyaBZHQKb3c6Zpi7V1fZQoaAZoCWgPQwjPhvwzg3jnv5SGlFKUaBVLMmgWR0Cm+TTbnHNpdX2UKGgGaAloD0MIi1OthVlo4r+UhpRSlGgVSzJoFkdApvj15D7ZWnV9lChoBmgJaA9DCB123zE89ua/lIaUUpRoFUsyaBZHQKb4vbnoxHp1fZQoaAZoCWgPQwjcLckBuxrxv5SGlFKUaBVLMmgWR0Cm+IJqIrOJdX2UKGgGaAloD0MIe4UF9wOe6r+UhpRSlGgVSzJoFkdApvq7XBguy3V9lChoBmgJaA9DCAyx+iMMg+W/lIaUUpRoFUsyaBZHQKb6fT2nKnx1fZQoaAZoCWgPQwgW9rTDXxPwv5SGlFKUaBVLMmgWR0Cm+kXtjTa1dX2UKGgGaAloD0MIsKw0KQWd87+UhpRSlGgVSzJoFkdApvoLiXIEKXV9lChoBmgJaA9DCH+jHTf87ue/lIaUUpRoFUsyaBZHQKb8eEi+tbN1fZQoaAZoCWgPQwgMzuDvF3Pyv5SGlFKUaBVLMmgWR0Cm/DoGQjlgdX2UKGgGaAloD0MIPZgUH58Q8L+UhpRSlGgVSzJoFkdApvwCkj5bhXV9lChoBmgJaA9DCBu8r8qFSu6/lIaUUpRoFUsyaBZHQKb7yBVdX1d1fZQoaAZoCWgPQwj8U6pE2dvwv5SGlFKUaBVLMmgWR0Cm/jotL+PzdX2UKGgGaAloD0MIdhiT/l6K7L+UhpRSlGgVSzJoFkdApv39XNke63V9lChoBmgJaA9DCLN8XYb/dPC/lIaUUpRoFUsyaBZHQKb9xjmSyMV1fZQoaAZoCWgPQwjtRbQdU7fzv5SGlFKUaBVLMmgWR0Cm/Yt7a7EpdX2UKGgGaAloD0MIrmUyHM9n9r+UhpRSlGgVSzJoFkdApwAHzasZHnV9lChoBmgJaA9DCPilft5UpO6/lIaUUpRoFUsyaBZHQKb/yZ4wAVB1fZQoaAZoCWgPQwhbW3heKrbsv5SGlFKUaBVLMmgWR0Cm/5JyQxN7dX2UKGgGaAloD0MIDkqYaftX7r+UhpRSlGgVSzJoFkdApv9YNqgyunV9lChoBmgJaA9DCJYlOssswuW/lIaUUpRoFUsyaBZHQKcB37TDwYt1fZQoaAZoCWgPQwh7ZkmAmtrrv5SGlFKUaBVLMmgWR0CnAaGkN4JNdX2UKGgGaAloD0MIJov7j0wH6b+UhpRSlGgVSzJoFkdApwFqde6ZpnV9lChoBmgJaA9DCFUS2QdZVvG/lIaUUpRoFUsyaBZHQKcBL4yGi6B1fZQoaAZoCWgPQwjrGi0Heijtv5SGlFKUaBVLMmgWR0CnA7OOsDGMdX2UKGgGaAloD0MIA+yjU1c+6L+UhpRSlGgVSzJoFkdApwN1xVAAyXV9lChoBmgJaA9DCIQSZtr+leO/lIaUUpRoFUsyaBZHQKcDPrFfiP11fZQoaAZoCWgPQwiLOJ1kq0vmv5SGlFKUaBVLMmgWR0CnAwRaxHG0dX2UKGgGaAloD0MIcXFUbqIW7b+UhpRSlGgVSzJoFkdApwVGTibUgHV9lChoBmgJaA9DCN6NBYVBmeq/lIaUUpRoFUsyaBZHQKcFB0ihWYF1fZQoaAZoCWgPQwhgVijS/Zzjv5SGlFKUaBVLMmgWR0CnBM81n/T9dX2UKGgGaAloD0MIFtwPeGCA57+UhpRSlGgVSzJoFkdApwSUHKOktXV9lChoBmgJaA9DCFSnA1lP7fG/lIaUUpRoFUsyaBZHQKcGSIYWLxZ1fZQoaAZoCWgPQwioNGJmn0fnv5SGlFKUaBVLMmgWR0CnBgmF8G9pdX2UKGgGaAloD0MIXFSLiGKy9b+UhpRSlGgVSzJoFkdApwXRT/ACXHV9lChoBmgJaA9DCA1QGmoUkui/lIaUUpRoFUsyaBZHQKcFlgb6xgR1fZQoaAZoCWgPQwjYuP5dnznrv5SGlFKUaBVLMmgWR0CnB0hkZrHmdX2UKGgGaAloD0MIAKjixi1m8r+UhpRSlGgVSzJoFkdApwcJkbxVhnV9lChoBmgJaA9DCBEAHHv2XOu/lIaUUpRoFUsyaBZHQKcG0URFqi51fZQoaAZoCWgPQwixpNx9jg/wv5SGlFKUaBVLMmgWR0CnBpXpwCKadX2UKGgGaAloD0MIlYCYhAt57L+UhpRSlGgVSzJoFkdApwhUZccENnV9lChoBmgJaA9DCCydD88S5PO/lIaUUpRoFUsyaBZHQKcIFVWCEpR1fZQoaAZoCWgPQwg/yLJg4g/qv5SGlFKUaBVLMmgWR0CnB90q6OHWdX2UKGgGaAloD0MIjgHZ690f7L+UhpRSlGgVSzJoFkdApweh3iaRZHV9lChoBmgJaA9DCANDVrd6zum/lIaUUpRoFUsyaBZHQKcJaoQ4CIV1fZQoaAZoCWgPQwj0+L1Nf/bhv5SGlFKUaBVLMmgWR0CnCSxmkFfRdX2UKGgGaAloD0MIUDQPYJFf4L+UhpRSlGgVSzJoFkdApwj1RUFSsXV9lChoBmgJaA9DCI8ZqIx/X/O/lIaUUpRoFUsyaBZHQKcIukVvddp1fZQoaAZoCWgPQwiX5esy/Kfgv5SGlFKUaBVLMmgWR0CnCnht+CsfdX2UKGgGaAloD0MI+5KNB1vs8L+UhpRSlGgVSzJoFkdApwo5YT0xunV9lChoBmgJaA9DCHWr56T3TfG/lIaUUpRoFUsyaBZHQKcKAUuctoV1fZQoaAZoCWgPQwgRrKqX36n2v5SGlFKUaBVLMmgWR0CnCcYFaB7NdX2UKGgGaAloD0MIXVK13QTf5b+UhpRSlGgVSzJoFkdApwuB26kIonV9lChoBmgJaA9DCJGb4QZ8fu2/lIaUUpRoFUsyaBZHQKcLQuJUHY91fZQoaAZoCWgPQwj3WWWmtP7rv5SGlFKUaBVLMmgWR0CnCwqtHQQddX2UKGgGaAloD0MIGjGzz2NU9r+UhpRSlGgVSzJoFkdApwrPVy3kP3V9lChoBmgJaA9DCDZ4X5ULFfW/lIaUUpRoFUsyaBZHQKcMlqIrOJN1fZQoaAZoCWgPQwgG1QYnoh/zv5SGlFKUaBVLMmgWR0CnDFeHaewtdX2UKGgGaAloD0MIjBNf7SjO3L+UhpRSlGgVSzJoFkdApwwfd43WF3V9lChoBmgJaA9DCCQO2UC62N2/lIaUUpRoFUsyaBZHQKcL5DBuXNV1fZQoaAZoCWgPQwiWIY51cZvwv5SGlFKUaBVLMmgWR0CnDaJO32EkdX2UKGgGaAloD0MI8MAAwocS6b+UhpRSlGgVSzJoFkdApw1jU/fO2XV9lChoBmgJaA9DCF2I1R9hGOO/lIaUUpRoFUsyaBZHQKcNKzoEB8x1fZQoaAZoCWgPQwgbvK/Khcrjv5SGlFKUaBVLMmgWR0CnDPABT4tZdX2UKGgGaAloD0MIMXiY9s3947+UhpRSlGgVSzJoFkdApw624gA6uHV9lChoBmgJaA9DCFdD4h5LH+2/lIaUUpRoFUsyaBZHQKcOd+ZPVNJ1fZQoaAZoCWgPQwimRX2SO2zpv5SGlFKUaBVLMmgWR0CnDj/LLZBcdX2UKGgGaAloD0MIcQD9vn9z5b+UhpRSlGgVSzJoFkdApw4EinpB5XV9lChoBmgJaA9DCJxSXiuhO+a/lIaUUpRoFUsyaBZHQKcPybxVhkR1fZQoaAZoCWgPQwi6gm3Ek93zv5SGlFKUaBVLMmgWR0CnD4syzolldX2UKGgGaAloD0MI8E+pEmVv7r+UhpRSlGgVSzJoFkdApw9TK9wm3XV9lChoBmgJaA9DCADirl5FxvW/lIaUUpRoFUsyaBZHQKcPF+z+m3x1fZQoaAZoCWgPQwgDd6BOefTtv5SGlFKUaBVLMmgWR0CnEMw3HaN/dX2UKGgGaAloD0MIC7Wmecdp8L+UhpRSlGgVSzJoFkdApxCNMEidKHV9lChoBmgJaA9DCFtfJLTlXOm/lIaUUpRoFUsyaBZHQKcQVP+GXX11fZQoaAZoCWgPQwg49BYP77nsv5SGlFKUaBVLMmgWR0CnEBnNHH3ldX2UKGgGaAloD0MInbtdL00R6b+UhpRSlGgVSzJoFkdApxHaqEOAiHV9lChoBmgJaA9DCB050hkYOfG/lIaUUpRoFUsyaBZHQKcRm5q/M4d1fZQoaAZoCWgPQwj0jH3JxkPwv5SGlFKUaBVLMmgWR0CnEWNlI3BIdX2UKGgGaAloD0MIZYuk3ehj6r+UhpRSlGgVSzJoFkdApxEoLiMo+nV9lChoBmgJaA9DCKJinL8JBeS/lIaUUpRoFUsyaBZHQKcS2SRr8BN1fZQoaAZoCWgPQwjmIr4Tsx7wv5SGlFKUaBVLMmgWR0CnEpo0hvBKdX2UKGgGaAloD0MIPfGcLSC08L+UhpRSlGgVSzJoFkdApxJiBy0a63V9lChoBmgJaA9DCGEzwAXZMua/lIaUUpRoFUsyaBZHQKcSJrhR64V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (426 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.8772119241533801, "std_reward": 0.2094367333356703, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-16T08:40:31.547100"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0503ff6b095581e0f2cdc6f4a1b895abd8b44d999a95b50e4aece9ea4d6a50d
3
+ size 2387