File size: 2,833 Bytes
8a6d9c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: nllb-200-distilled-600M-finetuned_ramayana_sns_prose_lexrank_new
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nllb-200-distilled-600M-finetuned_ramayana_sns_prose_lexrank_new

This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5955
- Rouge1: 17.0715
- Rouge2: 1.7786
- Rougel: 13.4279
- Rougelsum: 15.116

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 3.8967        | 1.0   | 86   | 3.7945          | 15.1996 | 1.2821 | 12.4518 | 13.4409   |
| 3.8364        | 2.0   | 172  | 3.7584          | 15.4522 | 1.4203 | 12.6976 | 13.5883   |
| 3.8006        | 3.0   | 258  | 3.7351          | 15.6107 | 1.5487 | 12.7653 | 13.6495   |
| 3.7663        | 4.0   | 344  | 3.7081          | 15.7318 | 1.4526 | 12.9915 | 13.8208   |
| 3.7108        | 5.0   | 430  | 3.6849          | 14.9819 | 1.335  | 12.3487 | 12.9351   |
| 3.6932        | 6.0   | 516  | 3.6721          | 15.7441 | 1.3281 | 12.943  | 13.6367   |
| 3.6635        | 7.0   | 602  | 3.6599          | 15.7133 | 1.4432 | 12.6204 | 13.7309   |
| 3.6417        | 8.0   | 688  | 3.6425          | 16.0359 | 1.5975 | 13.0271 | 14.1899   |
| 3.6241        | 9.0   | 774  | 3.6298          | 16.6481 | 1.7167 | 13.266  | 14.5474   |
| 3.603         | 10.0  | 860  | 3.6209          | 16.5086 | 1.7139 | 13.059  | 14.5272   |
| 3.5692        | 11.0  | 946  | 3.6120          | 16.7846 | 1.5967 | 13.171  | 14.6977   |
| 3.5757        | 12.0  | 1032 | 3.6078          | 16.7106 | 1.7489 | 13.277  | 14.8431   |
| 3.553         | 13.0  | 1118 | 3.6010          | 17.297  | 1.7352 | 13.4176 | 15.4798   |
| 3.547         | 14.0  | 1204 | 3.5955          | 17.0715 | 1.7786 | 13.4279 | 15.116    |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1