File size: 1,873 Bytes
91e7070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: studio-ousia/mluke-base
tags:
- generated_from_trainer
model-index:
- name: exp_mluke_base_auan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# exp_mluke_base_auan

This model is a fine-tuned version of [studio-ousia/mluke-base](https://huggingface.co/studio-ousia/mluke-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1706

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 618
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5369        | 0.9932 | 55   | 0.4464          |
| 0.2825        | 1.9865 | 110  | 0.2670          |
| 0.2248        | 2.9977 | 166  | 0.2278          |
| 0.1797        | 3.9910 | 221  | 0.2210          |
| 0.111         | 4.9842 | 276  | 0.1788          |
| 0.1056        | 5.9955 | 332  | 0.1682          |
| 0.0981        | 6.9887 | 387  | 0.1899          |
| 0.0803        | 8.0    | 443  | 0.1720          |
| 0.0768        | 8.9932 | 498  | 0.1572          |
| 0.0504        | 9.9323 | 550  | 0.1706          |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1