--- license: apache-2.0 base_model: bert-base-uncased tags: - text-classification - bert - english model-index: - name: BERT Classification results: [] language: - en pipeline_tag: text-classification metrics: - accuracy --- # BERT Classification ## Model Overview - **Model Name**: BERT Classification - **Model Type**: Text Classification - **Developer**: Mansoor Hamidzadeh - **Framework**: Transformers - **Language**: English - **License**: Apache-2.0 ## Model Description This model is a fine-tuned BERT (Bidirectional Encoder Representations from Transformers) designed for text classification tasks. It categorizes text into four labels: - **Label 1**: Household - **Label 2**: Books - **Label 3**: Clothing & Accessories - **Label 4**: Electronics ## Technical Details - **Model Size**: 109M parameters - **Tensor Type**: F32 - **File Format**: Safetensors ## How To Use ```python # Use a pipeline as a high-level helper from transformers import pipeline text='' pipe = pipeline("text-classification", model="mansoorhamidzadeh/bert_classification") pipe(text) ``` ## Usage The model is useful for categorizing product descriptions or similar text data into predefined labels. ## Citation If you use this model in your research or applications, please cite it as follows: ```bibtex @misc{mansoorhamidzadeh/bert_classification, author = {mansoorhamidzadeh}, title = {English to Persian Translation using MT5-Small}, year = {2024}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/mansoorhamidzadeh/bert_classification}}, }