manu commited on
Commit
9a19e23
·
verified ·
1 Parent(s): 172a8fa

Upload ColQwen2

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +51 -0
  3. generation_config.json +13 -0
  4. model.safetensors +3 -0
  5. modeling_colqwen2.py +107 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "vidore/colqwen2-base",
3
+ "architectures": [
4
+ "ColQwen2"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoModel": "modeling_colqwen2.ColQwen2"
9
+ },
10
+ "bos_token_id": 151643,
11
+ "eos_token_id": 151645,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 1536,
14
+ "image_token_id": 151655,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 8960,
17
+ "max_position_embeddings": 32768,
18
+ "max_window_layers": 28,
19
+ "model_type": "qwen2_vl",
20
+ "num_attention_heads": 12,
21
+ "num_hidden_layers": 28,
22
+ "num_key_value_heads": 2,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_scaling": {
25
+ "mrope_section": [
26
+ 16,
27
+ 24,
28
+ 24
29
+ ],
30
+ "rope_type": "default",
31
+ "type": "default"
32
+ },
33
+ "rope_theta": 1000000.0,
34
+ "sliding_window": 32768,
35
+ "tie_word_embeddings": true,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.45.2",
38
+ "use_cache": true,
39
+ "use_sliding_window": false,
40
+ "video_token_id": 151656,
41
+ "vision_config": {
42
+ "hidden_size": 1536,
43
+ "in_chans": 3,
44
+ "model_type": "qwen2_vl",
45
+ "spatial_patch_size": 14
46
+ },
47
+ "vision_end_token_id": 151653,
48
+ "vision_start_token_id": 151652,
49
+ "vision_token_id": 151654,
50
+ "vocab_size": 151936
51
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.01,
10
+ "top_k": 1,
11
+ "top_p": 0.001,
12
+ "transformers_version": "4.45.2"
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091a37354d5fddd0abc9184402570c6dc95a4693a54dcebdb8a246252c696e88
3
+ size 4418444496
modeling_colqwen2.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import ClassVar, List, Optional
2
+
3
+ import torch
4
+ from torch import nn
5
+ from transformers.models.qwen2_vl import Qwen2VLConfig, Qwen2VLForConditionalGeneration
6
+
7
+
8
+ class ColQwen2(Qwen2VLForConditionalGeneration):
9
+ """
10
+ ColQwen2 model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
11
+ """
12
+
13
+ main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
14
+
15
+ def __init__(self, config: Qwen2VLConfig):
16
+ super().__init__(config=config)
17
+ self.dim = 128
18
+ self.custom_text_proj = nn.Linear(self.model.config.hidden_size, self.dim)
19
+ self.padding_side = "left"
20
+ self.post_init()
21
+
22
+
23
+ def inner_forward(
24
+ self,
25
+ input_ids: torch.LongTensor = None,
26
+ attention_mask: Optional[torch.Tensor] = None,
27
+ position_ids: Optional[torch.LongTensor] = None,
28
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
29
+ inputs_embeds: Optional[torch.FloatTensor] = None,
30
+ use_cache: Optional[bool] = None,
31
+ output_attentions: Optional[bool] = None,
32
+ output_hidden_states: Optional[bool] = None,
33
+ return_dict: Optional[bool] = None,
34
+ pixel_values: Optional[torch.Tensor] = None,
35
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
36
+ image_grid_thw: Optional[torch.LongTensor] = None,
37
+ video_grid_thw: Optional[torch.LongTensor] = None,
38
+ ) -> torch.Tensor:
39
+
40
+ if inputs_embeds is None:
41
+ inputs_embeds = self.model.embed_tokens(input_ids)
42
+ if pixel_values is not None:
43
+ pixel_values = pixel_values.type(self.visual.get_dtype())
44
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
45
+ image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1).expand_as(inputs_embeds)
46
+ image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
47
+ inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
48
+
49
+ if pixel_values_videos is not None:
50
+ pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
51
+ video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
52
+ video_mask = (input_ids == self.config.video_token_id).unsqueeze(-1).expand_as(inputs_embeds)
53
+ video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
54
+ inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
55
+
56
+ if attention_mask is not None:
57
+ attention_mask = attention_mask.to(inputs_embeds.device)
58
+
59
+ outputs = self.model(
60
+ input_ids=None,
61
+ position_ids=position_ids,
62
+ attention_mask=attention_mask,
63
+ past_key_values=past_key_values,
64
+ inputs_embeds=inputs_embeds,
65
+ use_cache=use_cache,
66
+ output_attentions=output_attentions,
67
+ output_hidden_states=output_hidden_states,
68
+ return_dict=return_dict,
69
+ )
70
+
71
+ hidden_states = outputs[0]
72
+ return hidden_states
73
+
74
+
75
+
76
+ def forward(self, *args, **kwargs) -> torch.Tensor:
77
+ # Delete output_hidden_states from kwargs
78
+ kwargs.pop("output_hidden_states", None)
79
+
80
+ # The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
81
+ if "pixel_values" in kwargs:
82
+ # compute pixel_values offsets
83
+ offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
84
+ kwargs["pixel_values"] = torch.cat(
85
+ [pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)],
86
+ dim=0,
87
+ )
88
+
89
+ position_ids, rope_deltas = self.get_rope_index(
90
+ input_ids=kwargs["input_ids"],
91
+ image_grid_thw=kwargs.get("image_grid_thw", None),
92
+ video_grid_thw=None,
93
+ attention_mask=kwargs.get("attention_mask", None),
94
+ )
95
+
96
+ last_hidden_states = self.inner_forward(*args,
97
+ **kwargs,
98
+ position_ids=position_ids,
99
+ use_cache=False,
100
+ output_hidden_states=True) # (batch_size, sequence_length, hidden_size)
101
+
102
+ proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
103
+
104
+ # L2 normalization
105
+ proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
106
+ proj = proj * kwargs["attention_mask"].unsqueeze(-1) # (batch_size, sequence_length, dim)
107
+ return proj