File size: 2,877 Bytes
f4f2396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-spanish-wwm-cased-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-spanish-wwm-cased-ner

This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3695
- Precision: 0.8640
- Recall: 0.9126
- F1: 0.8876
- Accuracy: 0.9378

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 280  | 0.3016          | 0.7779    | 0.8252 | 0.8009 | 0.9052   |
| 0.4113        | 2.0   | 560  | 0.2671          | 0.8150    | 0.8681 | 0.8407 | 0.9248   |
| 0.4113        | 3.0   | 840  | 0.2747          | 0.8181    | 0.8593 | 0.8382 | 0.9268   |
| 0.1179        | 4.0   | 1120 | 0.2875          | 0.8336    | 0.8978 | 0.8645 | 0.9312   |
| 0.1179        | 5.0   | 1400 | 0.3087          | 0.8529    | 0.9022 | 0.8769 | 0.9361   |
| 0.0608        | 6.0   | 1680 | 0.3449          | 0.8645    | 0.8978 | 0.8808 | 0.9351   |
| 0.0608        | 7.0   | 1960 | 0.3478          | 0.8539    | 0.8919 | 0.8725 | 0.9337   |
| 0.0306        | 8.0   | 2240 | 0.3495          | 0.8426    | 0.8963 | 0.8686 | 0.9337   |
| 0.0231        | 9.0   | 2520 | 0.3812          | 0.8660    | 0.9096 | 0.8873 | 0.9366   |
| 0.0231        | 10.0  | 2800 | 0.3346          | 0.8473    | 0.8963 | 0.8711 | 0.9386   |
| 0.0174        | 11.0  | 3080 | 0.3721          | 0.8583    | 0.9067 | 0.8818 | 0.9373   |
| 0.0174        | 12.0  | 3360 | 0.3778          | 0.8632    | 0.9067 | 0.8844 | 0.9371   |
| 0.014         | 13.0  | 3640 | 0.3733          | 0.8624    | 0.9096 | 0.8854 | 0.9366   |
| 0.014         | 14.0  | 3920 | 0.3709          | 0.8652    | 0.9126 | 0.8882 | 0.9398   |
| 0.013         | 15.0  | 4200 | 0.3695          | 0.8640    | 0.9126 | 0.8876 | 0.9378   |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1