File size: 2,887 Bytes
8c5f05a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-spanish-wwm-uncased-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-spanish-wwm-uncased-ner
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3905
- Precision: 0.8768
- Recall: 0.9067
- F1: 0.8915
- Accuracy: 0.9376
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 280 | 0.2690 | 0.8236 | 0.8578 | 0.8403 | 0.9268 |
| 0.3996 | 2.0 | 560 | 0.2917 | 0.8116 | 0.8681 | 0.8389 | 0.9180 |
| 0.3996 | 3.0 | 840 | 0.2715 | 0.8495 | 0.8696 | 0.8594 | 0.9319 |
| 0.118 | 4.0 | 1120 | 0.2914 | 0.8567 | 0.9037 | 0.8796 | 0.9370 |
| 0.118 | 5.0 | 1400 | 0.3040 | 0.8454 | 0.8993 | 0.8715 | 0.9330 |
| 0.0608 | 6.0 | 1680 | 0.2979 | 0.8631 | 0.8963 | 0.8794 | 0.9359 |
| 0.0608 | 7.0 | 1960 | 0.3376 | 0.8653 | 0.8948 | 0.8798 | 0.9322 |
| 0.0353 | 8.0 | 2240 | 0.3283 | 0.8622 | 0.9081 | 0.8846 | 0.9370 |
| 0.0236 | 9.0 | 2520 | 0.3584 | 0.8575 | 0.9007 | 0.8786 | 0.9351 |
| 0.0236 | 10.0 | 2800 | 0.3891 | 0.8813 | 0.9022 | 0.8917 | 0.9346 |
| 0.0155 | 11.0 | 3080 | 0.3678 | 0.8764 | 0.9037 | 0.8899 | 0.9381 |
| 0.0155 | 12.0 | 3360 | 0.3736 | 0.8759 | 0.9096 | 0.8924 | 0.9386 |
| 0.0123 | 13.0 | 3640 | 0.4030 | 0.8721 | 0.8993 | 0.8855 | 0.9349 |
| 0.0123 | 14.0 | 3920 | 0.3890 | 0.8768 | 0.9067 | 0.8915 | 0.9373 |
| 0.0123 | 15.0 | 4200 | 0.3905 | 0.8768 | 0.9067 | 0.8915 | 0.9376 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|