--- base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-spanish-wwm-uncased-ner results: [] --- # bert-base-spanish-wwm-uncased-ner This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3905 - Precision: 0.8768 - Recall: 0.9067 - F1: 0.8915 - Accuracy: 0.9376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 280 | 0.2690 | 0.8236 | 0.8578 | 0.8403 | 0.9268 | | 0.3996 | 2.0 | 560 | 0.2917 | 0.8116 | 0.8681 | 0.8389 | 0.9180 | | 0.3996 | 3.0 | 840 | 0.2715 | 0.8495 | 0.8696 | 0.8594 | 0.9319 | | 0.118 | 4.0 | 1120 | 0.2914 | 0.8567 | 0.9037 | 0.8796 | 0.9370 | | 0.118 | 5.0 | 1400 | 0.3040 | 0.8454 | 0.8993 | 0.8715 | 0.9330 | | 0.0608 | 6.0 | 1680 | 0.2979 | 0.8631 | 0.8963 | 0.8794 | 0.9359 | | 0.0608 | 7.0 | 1960 | 0.3376 | 0.8653 | 0.8948 | 0.8798 | 0.9322 | | 0.0353 | 8.0 | 2240 | 0.3283 | 0.8622 | 0.9081 | 0.8846 | 0.9370 | | 0.0236 | 9.0 | 2520 | 0.3584 | 0.8575 | 0.9007 | 0.8786 | 0.9351 | | 0.0236 | 10.0 | 2800 | 0.3891 | 0.8813 | 0.9022 | 0.8917 | 0.9346 | | 0.0155 | 11.0 | 3080 | 0.3678 | 0.8764 | 0.9037 | 0.8899 | 0.9381 | | 0.0155 | 12.0 | 3360 | 0.3736 | 0.8759 | 0.9096 | 0.8924 | 0.9386 | | 0.0123 | 13.0 | 3640 | 0.4030 | 0.8721 | 0.8993 | 0.8855 | 0.9349 | | 0.0123 | 14.0 | 3920 | 0.3890 | 0.8768 | 0.9067 | 0.8915 | 0.9373 | | 0.0123 | 15.0 | 4200 | 0.3905 | 0.8768 | 0.9067 | 0.8915 | 0.9376 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1