manueldeprada HF Staff commited on
Commit
6195a00
·
verified ·
1 Parent(s): e6a6713

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - custom_generate
5
+ - ancestral_sampling
6
+ ---
7
+
8
+ # Multinomial (Ancestral) Sampling simple implementation
9
+
10
+ ## Description
11
+ A clean, hackable implementation of ancestral sampling (multinomial sampling) with full KV cache support. This is a simplified alternative to the complex generation mixin in transformers, designed for readability and ease of modification while maintaining full performance.
12
+
13
+ The implementation supports both sampling and greedy decoding modes, with optional temperature scaling and top-k/top-p filtering.
14
+
15
+ ## Base model
16
+ - [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct)
17
+
18
+ ## Model compatibility
19
+ Most transformer LLM/VLM models trained for causal language modeling.
20
+
21
+ ## Additional Arguments
22
+ - `temperature` (float): Sampling temperature (default: 1.0, higher = more random)
23
+ - `top_k` (int): Only consider top-k most probable tokens (default: None)
24
+ - `top_p` (float): Only consider tokens with cumulative probability <= top_p (default: None)
25
+ - `do_sample` (bool): Whether to use sampling (True, default) or greedy decoding (False)
26
+
27
+ ## Output Type changes
28
+ When `return_dict_in_generate=True`, returns a dictionary with:
29
+ - `sequences`: Generated token IDs
30
+ - `scores`: Log probabilities of sampled tokens (with temperature/sampling modifications)
31
+ - `logps`: Original model log probabilities (T=1, no modifications)
32
+ - `prompt_lens`: Length of input prompts
33
+ - `lens`: Final sequence lengths
34
+
35
+ ## Example usage
36
+
37
+ ```py
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
41
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", device_map="auto")
42
+
43
+ inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
44
+
45
+ # Basic sampling
46
+ gen_out = model.generate(**inputs, custom_generate="manueldeprada/ancestral_sampling", trust_remote_code=True)
47
+
48
+ # With temperature
49
+ gen_out = model.generate(**inputs, custom_generate="manueldeprada/ancestral_sampling", temperature=0.8, trust_remote_code=True)
50
+
51
+ # With top-k
52
+ gen_out = model.generate(**inputs, custom_generate="manueldeprada/ancestral_sampling", top_k=50, trust_remote_code=True)
53
+
54
+ # With top-p (nucleus sampling)
55
+ gen_out = model.generate(**inputs, custom_generate="manueldeprada/ancestral_sampling", top_p=0.9, trust_remote_code=True)
56
+
57
+ # Greedy decoding (no sampling)
58
+ gen_out = model.generate(**inputs, custom_generate="manueldeprada/ancestral_sampling", do_sample=False, trust_remote_code=True)
59
+
60
+ # Get detailed output with probabilities
61
+ gen_out = model.generate(
62
+ **inputs,
63
+ custom_generate="manueldeprada/ancestral_sampling",
64
+ return_dict_in_generate=True,
65
+ trust_remote_code=True
66
+ )
67
+ print(f"Generated text: {tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)}")
68
+ print(f"Sampling scores: {gen_out.scores}")
69
+ print(f"Model log probabilities: {gen_out.logps}")
70
+ ```
71
+
72
+ ## Algorithm
73
+ 1. Initialize KV cache and prepare input sequences
74
+ 2. For each generation step:
75
+ - Get logits from the model for the current sequence
76
+ - Apply temperature scaling to logits
77
+ - Optionally apply top-k filtering (keep only top-k tokens)
78
+ - Optionally apply top-p filtering (nucleus sampling)
79
+ - Convert to probabilities using softmax
80
+ - Sample from the probability distribution (or take argmax for greedy)
81
+ - Append the selected token to the sequence
82
+ - Update KV cache and track sequence completion
83
+ 3. Return generated sequences and probability information
84
+
85
+ ## Helper Functions for Custom Generation
86
+
87
+ The implementation provides two key helper functions that you can use to build your own generation strategies:
88
+
89
+ ### `init_gen(model_kwargs, model, max_new_tokens, bos_token_id)`
90
+ Initializes the generation process and prepares the KV cache:
91
+ - Sets up input sequences and model inputs
92
+ - Prepares the KV cache for generation
93
+ - Returns updated `model_kwargs` and `input_ids`
94
+
95
+ ### `ps_next(model, model_kwargs, input_ids)`
96
+ Gets the next token logits and updates the KV cache:
97
+ - Runs the model forward pass
98
+ - Extracts logits for the last token
99
+ - Updates the KV cache
100
+ - Returns updated `model_kwargs` and `logits`
101
+
102
+ ### Example: Custom Generation Loop
103
+
104
+ ```py
105
+ from ancestral_sampling.generate import init_gen, ps_next
106
+
107
+ def custom_generation(model, model_kwargs, max_new_tokens=20, temperature=1.0):
108
+ # Initialize generation
109
+ model_kwargs, input_ids = init_gen(model_kwargs, model, max_new_tokens, bos_token_id)
110
+
111
+ for i in range(max_new_tokens):
112
+ # Get next token logits
113
+ model_kwargs, logits = ps_next(model, model_kwargs, input_ids)
114
+
115
+ # Your custom logic here
116
+ probs = (logits / temperature).softmax(-1)
117
+ next_token = torch.multinomial(probs, 1)
118
+
119
+ # Append token and continue
120
+ input_ids = torch.cat([input_ids, next_token], dim=-1)
121
+
122
+ # Add your stopping conditions
123
+ if next_token.item() == eos_token_id:
124
+ break
125
+
126
+ return input_ids
127
+ ```
128
+
SmolLM2-135M/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 0,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 576,
11
+ "initializer_range": 0.041666666666666664,
12
+ "intermediate_size": 1536,
13
+ "is_llama_config": true,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 9,
17
+ "num_hidden_layers": 30,
18
+ "num_key_value_heads": 3,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_interleaved": false,
22
+ "rope_scaling": null,
23
+ "rope_theta": 100000,
24
+ "tie_word_embeddings": true,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.40.1",
27
+ "use_cache": true,
28
+ "vocab_size": 49152
29
+ }
custom_generate/generate.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import GenerationConfig
3
+
4
+
5
+ def ps_next(model, model_kwargs, input_ids):
6
+ """
7
+ Auxiliary function to get the next token probabilities and update the KV cache.
8
+
9
+ Args:
10
+ model: The language model
11
+ model_kwargs: Model keyword arguments including KV cache
12
+ input_ids: Current input token IDs
13
+ T: Temperature for sampling
14
+
15
+ Returns:
16
+ Updated model_kwargs, probabilities at temperature T, probabilities at T=1
17
+ """
18
+ model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
19
+ with torch.no_grad():
20
+ outputs = model(**model_inputs, return_dict=True)
21
+
22
+ logits = outputs.logits[:, -1].detach()
23
+ model_kwargs = model._update_model_kwargs_for_generation(
24
+ outputs, model_kwargs, is_encoder_decoder=model.config.is_encoder_decoder
25
+ )
26
+ del outputs
27
+ return model_kwargs, logits
28
+
29
+ def init_gen(model_kwargs, model, max_new_tokens, bos_token_id):
30
+ """
31
+ Auxiliary function to initialize the generation process and prepare the KV cache.
32
+
33
+ Args:
34
+ model_kwargs: Model keyword arguments
35
+ model: The language model
36
+ max_new_tokens: Maximum number of new tokens to generate
37
+
38
+ Returns:
39
+ Model keyword arguments and input token IDs
40
+ """
41
+
42
+ input_ids, model_input_name, model_kwargs = model._prepare_model_inputs(
43
+ None, bos_token_id, model_kwargs
44
+ )
45
+
46
+ batch_size = input_ids.shape[0]
47
+ model._prepare_cache_for_generation(
48
+ model.generation_config, model_kwargs, None, batch_size,
49
+ max_cache_length=max_new_tokens, device=input_ids.device
50
+ )
51
+
52
+ # Get initial cache position
53
+ model_kwargs = model._get_initial_cache_position(input_ids.shape[1], input_ids.device, model_kwargs)
54
+ return model_kwargs, input_ids
55
+
56
+ def _apply_top_k_top_p(ps, model):
57
+ if hasattr(model, 'generation_config') and hasattr(model.generation_config, 'top_k') and model.generation_config.top_k is not None:
58
+ top_k = model.generation_config.top_k
59
+ top_k = min(top_k, ps.size(-1))
60
+ indices_to_remove = ps < torch.topk(ps, top_k)[0][..., -1, None]
61
+ ps[indices_to_remove] = 0.0
62
+ ps = ps / ps.sum(dim=-1, keepdim=True)
63
+
64
+ # Apply top-p filtering if specified
65
+ if hasattr(model, 'generation_config') and hasattr(model.generation_config, 'top_p') and model.generation_config.top_p is not None:
66
+ top_p = model.generation_config.top_p
67
+ if top_p < 1.0:
68
+ sorted_probs, sorted_indices = torch.sort(ps, descending=True)
69
+ cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
70
+
71
+ # Remove tokens with cumulative probability above the threshold
72
+ sorted_indices_to_remove = cumulative_probs > top_p
73
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
74
+ sorted_indices_to_remove[..., 0] = 0
75
+
76
+ indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
77
+ ps[indices_to_remove] = 0.0
78
+ ps = ps / ps.sum(dim=-1, keepdim=True)
79
+ return ps
80
+
81
+ def ancestral_sampling(model_kwargs, model, eos_token_ids, pad_token_id, bos_token_id, do_sample=True, max_new_tokens=20, T=1.0):
82
+ """
83
+ Ancestral sampling implementation with proper KV caching.
84
+
85
+ Args:
86
+ prompts: List of input prompts
87
+ model: The language model
88
+ max_new_tokens: Maximum number of new tokens to generate
89
+ eos_token_ids: List of end-of-sequence token IDs
90
+ pad_token_id: Padding token ID
91
+ bos_token_id: Beginning-of-sequence token ID
92
+ max_new_tokens: Maximum number of new tokens to generate
93
+
94
+ Returns:
95
+ Generated sequences, log probabilities, and metadata
96
+ """
97
+ # Initialize the generation process and prepare the KV cache
98
+ model_kwargs, input_ids = init_gen(model_kwargs, model, max_new_tokens, bos_token_id)
99
+ batch_size, max_prompts_len = input_ids.shape
100
+ prompts_len = (input_ids != pad_token_id).sum(dim=-1)
101
+
102
+ # Keeps track of which sequences are finished and their lengths
103
+ active_seqs = input_ids.new_ones((batch_size, 1), dtype=torch.bool)
104
+ lens = torch.full((batch_size,), max_prompts_len, dtype=torch.long, device=input_ids.device)
105
+ # Modified log probabilities of the sequences
106
+ scores = torch.zeros((batch_size, max_new_tokens), dtype=torch.float32)
107
+ # Unfiltered sequence log probabilities (T=1, no sampling modifications)
108
+ logps = torch.zeros((batch_size, max_new_tokens), dtype=torch.float32)
109
+
110
+ for i in range(max_new_tokens):
111
+ # Get the next token probabilities and update the KV cache
112
+ model_kwargs, logits = ps_next(model, model_kwargs, input_ids)
113
+ # Original model probabilities (T=1, no sampling modifications)
114
+ model_ps = logits.softmax(-1)
115
+ # Sampling probabilities (T, with sampling modifications)
116
+ ps = (logits/T).softmax(-1)
117
+ ps = _apply_top_k_top_p(ps, model)
118
+
119
+ # Sample the next token and gather the log probabilities
120
+ if do_sample:
121
+ next_token_ids = torch.multinomial(ps, 1) * active_seqs + pad_token_id * ~active_seqs
122
+ else:
123
+ next_token_ids = torch.argmax(ps, dim=-1).unsqueeze(-1) * active_seqs + pad_token_id * ~active_seqs
124
+ next_token_logps = ps.gather(-1, next_token_ids).log()
125
+ next_token_model_logps = model_ps.gather(-1, next_token_ids).log()
126
+
127
+ input_ids = torch.cat([input_ids, next_token_ids], dim=-1)
128
+ scores[:, i] = (next_token_logps * active_seqs).squeeze()
129
+ logps[:, i] = (next_token_model_logps * active_seqs).squeeze()
130
+
131
+ lens += active_seqs.squeeze(-1).long()
132
+ active_seqs &= ~torch.isin(next_token_ids, eos_token_ids)
133
+ if active_seqs.sum() == 0:
134
+ break
135
+ return input_ids.detach().cpu(), scores[:,:i+1], logps[:,:i+1], prompts_len, lens.tolist()
136
+
137
+ def generate(model, **kwargs):
138
+ """
139
+ Ancestral sampling strategy - multinomial sampling with temperature and optional top-k/top-p filtering.
140
+ Simple implementation with proper KV caching support.
141
+
142
+ Args:
143
+ model: The language model
144
+ model_kwargs: Model keyword arguments from the tokenizer
145
+ generation_config: Generation configuration
146
+ temperature: Sampling temperature (higher = more random)
147
+ top_k: Only consider top-k most probable tokens
148
+ top_p: Only consider tokens with cumulative probability <= top_p
149
+ **kwargs: Additional arguments
150
+
151
+ Returns:
152
+ Generated token IDs
153
+ """
154
+ generation_config = model.generation_config
155
+ max_new_tokens = kwargs.get('max_new_tokens', generation_config.max_new_tokens)
156
+ do_sample = kwargs.get('do_sample', True)
157
+ eos_token_ids = kwargs.get('eos_token_ids', generation_config.eos_token_id)
158
+ if eos_token_ids is None:
159
+ raise ValueError("Model generation config does not have an EOS token id. You must provide it to generate() with the eos_token_ids argument.")
160
+ eos_token_ids = torch.as_tensor(eos_token_ids, device=model.device)
161
+ if eos_token_ids is not None and eos_token_ids.ndim == 0:
162
+ eos_token_ids = eos_token_ids.unsqueeze(0)
163
+
164
+ pad_token_id = kwargs.get('pad_token_id', generation_config.pad_token_id if generation_config.pad_token_id is not None else eos_token_ids[0])
165
+ bos_token_id = kwargs.get('bos_token_id', generation_config.bos_token_id)
166
+ if bos_token_id is None:
167
+ raise ValueError("Model generation config does not have a BOS token id. You must provide it to generate() with the bos_token_id argument.")
168
+ T = kwargs.get('temperature', 1.0)
169
+ return_dict = kwargs.get('return_dict_in_generate', False)
170
+
171
+ generated_ids, scores, logps, prompt_lens, lens = ancestral_sampling(
172
+ model_kwargs=kwargs,
173
+ model=model,
174
+ eos_token_ids=eos_token_ids,
175
+ pad_token_id=pad_token_id,
176
+ bos_token_id=bos_token_id,
177
+ do_sample=do_sample,
178
+ max_new_tokens=max_new_tokens,
179
+ T=T,
180
+ )
181
+
182
+ if return_dict:
183
+ return {
184
+ "sequences": generated_ids,
185
+ "scores": scores,
186
+ "logps": logps,
187
+ "prompt_lens": prompt_lens,
188
+ "lens": lens,
189
+ }
190
+ else:
191
+ return generated_ids
192
+
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.40.1"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80521b40281d6ce74e35c9282c22539e75aa0ac8578892b2a59955ef78d55da1
3
+ size 269060552
special_tokens_map.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|im_start|>",
5
+ "<|im_end|>",
6
+ "<repo_name>",
7
+ "<reponame>",
8
+ "<file_sep>",
9
+ "<filename>",
10
+ "<gh_stars>",
11
+ "<issue_start>",
12
+ "<issue_comment>",
13
+ "<issue_closed>",
14
+ "<jupyter_start>",
15
+ "<jupyter_text>",
16
+ "<jupyter_code>",
17
+ "<jupyter_output>",
18
+ "<jupyter_script>",
19
+ "<empty_output>"
20
+ ],
21
+ "bos_token": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "eos_token": {
29
+ "content": "<|endoftext|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ },
35
+ "unk_token": {
36
+ "content": "<|endoftext|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false
41
+ }
42
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<repo_name>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<reponame>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<file_sep>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<filename>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<gh_stars>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_start>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_comment>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<issue_closed>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_start>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_text>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_code>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<jupyter_output>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<jupyter_script>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<empty_output>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ }
140
+ },
141
+ "additional_special_tokens": [
142
+ "<|endoftext|>",
143
+ "<|im_start|>",
144
+ "<|im_end|>",
145
+ "<repo_name>",
146
+ "<reponame>",
147
+ "<file_sep>",
148
+ "<filename>",
149
+ "<gh_stars>",
150
+ "<issue_start>",
151
+ "<issue_comment>",
152
+ "<issue_closed>",
153
+ "<jupyter_start>",
154
+ "<jupyter_text>",
155
+ "<jupyter_code>",
156
+ "<jupyter_output>",
157
+ "<jupyter_script>",
158
+ "<empty_output>"
159
+ ],
160
+ "bos_token": "<|endoftext|>",
161
+ "clean_up_tokenization_spaces": false,
162
+ "eos_token": "<|endoftext|>",
163
+ "model_max_length": 8192,
164
+ "tokenizer_class": "GPT2Tokenizer",
165
+ "unk_token": "<|endoftext|>",
166
+ "vocab_size": 49152
167
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff