--- license: apache-2.0 base_model: openai/whisper-small.en tags: - generated_from_trainer metrics: - wer model-index: - name: checkpoints_1 results: [] --- # checkpoints_1 This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0186 - Wer: 2.9762 - Cer: 1.0999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:-----:|:------:|:---------------:|:------:| | 0.0529 | 0.5716 | 5000 | 3.5532 | 0.0494 | 7.8609 | | 0.028 | 1.1432 | 10000 | 5.5656 | 0.0413 | 9.7632 | | 0.0298 | 1.7149 | 15000 | 2.9926 | 0.0350 | 6.4210 | | 0.0133 | 2.2865 | 20000 | 2.1896 | 0.0322 | 5.0360 | | 0.0105 | 2.8581 | 25000 | 2.0795 | 0.0307 | 4.7797 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1