update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sbb-asr
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- marccgrau/sbbdata_allSNR
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Large-v2 German SBB ASR
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: SBB Dataset 05.01.2023
|
20 |
+
type: marccgrau/sbbdata_allSNR
|
21 |
+
args: 'config: German, split: train, test, val'
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.020291693088142042
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# Whisper Large-v2 German SBB ASR
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 05.01.2023 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.0272
|
36 |
+
- Wer: 0.0203
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 1e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 100
|
62 |
+
- training_steps: 600
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
69 |
+
| 1.3449 | 0.36 | 100 | 0.2160 | 0.0387 |
|
70 |
+
| 0.0651 | 0.71 | 200 | 0.0278 | 0.0184 |
|
71 |
+
| 0.0312 | 1.07 | 300 | 0.0316 | 0.0228 |
|
72 |
+
| 0.019 | 1.42 | 400 | 0.0259 | 0.0209 |
|
73 |
+
| 0.0135 | 1.78 | 500 | 0.0301 | 0.0203 |
|
74 |
+
| 0.0091 | 2.14 | 600 | 0.0272 | 0.0203 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.25.1
|
80 |
+
- Pytorch 1.13.1
|
81 |
+
- Datasets 2.8.0
|
82 |
+
- Tokenizers 0.12.1
|