marccgrau commited on
Commit
7812fb1
·
1 Parent(s): 86bf6b6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ license: apache-2.0
5
+ tags:
6
+ - sbb-asr
7
+ - generated_from_trainer
8
+ datasets:
9
+ - marccgrau/sbbdata_allSNR
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Large-v2 German SBB ASR
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: SBB Dataset 05.01.2023
20
+ type: marccgrau/sbbdata_allSNR
21
+ args: 'config: German, split: train, test, val'
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.020291693088142042
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Whisper Large-v2 German SBB ASR
32
+
33
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 05.01.2023 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0272
36
+ - Wer: 0.0203
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_steps: 100
62
+ - training_steps: 600
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
68
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
69
+ | 1.3449 | 0.36 | 100 | 0.2160 | 0.0387 |
70
+ | 0.0651 | 0.71 | 200 | 0.0278 | 0.0184 |
71
+ | 0.0312 | 1.07 | 300 | 0.0316 | 0.0228 |
72
+ | 0.019 | 1.42 | 400 | 0.0259 | 0.0209 |
73
+ | 0.0135 | 1.78 | 500 | 0.0301 | 0.0203 |
74
+ | 0.0091 | 2.14 | 600 | 0.0272 | 0.0203 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.25.1
80
+ - Pytorch 1.13.1
81
+ - Datasets 2.8.0
82
+ - Tokenizers 0.12.1