--- language: - de license: apache-2.0 tags: - sbb-asr - generated_from_trainer datasets: - marccgrau/sbbdata_allSNR metrics: - wer model-index: - name: Whisper Large-v2 German SBB ASR results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: SBB Dataset 05.01.2023 type: marccgrau/sbbdata_allSNR args: 'config: German, split: train, test, val' metrics: - name: Wer type: wer value: 0.020291693088142042 --- # Whisper Large-v2 German SBB ASR This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 05.01.2023 dataset. It achieves the following results on the evaluation set: - Loss: 0.0272 - Wer: 0.0203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.3449 | 0.36 | 100 | 0.2160 | 0.0387 | | 0.0651 | 0.71 | 200 | 0.0278 | 0.0184 | | 0.0312 | 1.07 | 300 | 0.0316 | 0.0228 | | 0.019 | 1.42 | 400 | 0.0259 | 0.0209 | | 0.0135 | 1.78 | 500 | 0.0301 | 0.0203 | | 0.0091 | 2.14 | 600 | 0.0272 | 0.0203 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.12.1