marcospiau commited on
Commit
e39072e
·
1 Parent(s): 5ba3ccb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: finetuned_minilm
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # finetuned_minilm
16
+
17
+ This model is a fine-tuned version of [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6736
20
+ - Accuracy: 0.9023
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 12345
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: constant
45
+ - num_epochs: 20
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
51
+ | 0.5371 | 1.0 | 619 | 0.2941 | 0.8782 |
52
+ | 0.2763 | 2.0 | 1238 | 0.2590 | 0.8986 |
53
+ | 0.1899 | 3.0 | 1857 | 0.3081 | 0.8959 |
54
+ | 0.1257 | 4.0 | 2476 | 0.2576 | 0.9177 |
55
+ | 0.0929 | 5.0 | 3095 | 0.3949 | 0.9059 |
56
+ | 0.0806 | 6.0 | 3714 | 0.3304 | 0.9173 |
57
+ | 0.0629 | 7.0 | 4333 | 0.4214 | 0.9073 |
58
+ | 0.0474 | 8.0 | 4952 | 0.4625 | 0.9145 |
59
+ | 0.0498 | 9.0 | 5571 | 0.4227 | 0.9236 |
60
+ | 0.049 | 10.0 | 6190 | 0.5549 | 0.8945 |
61
+ | 0.0411 | 11.0 | 6809 | 0.3340 | 0.9341 |
62
+ | 0.0272 | 12.0 | 7428 | 0.3317 | 0.9291 |
63
+ | 0.0264 | 13.0 | 8047 | 0.4099 | 0.9305 |
64
+ | 0.0279 | 14.0 | 8666 | 0.4092 | 0.9268 |
65
+ | 0.0242 | 15.0 | 9285 | 0.4418 | 0.9318 |
66
+ | 0.0241 | 16.0 | 9904 | 0.4352 | 0.9273 |
67
+ | 0.0238 | 17.0 | 10523 | 0.5306 | 0.9259 |
68
+ | 0.0216 | 18.0 | 11142 | 0.4267 | 0.9241 |
69
+ | 0.0166 | 19.0 | 11761 | 0.5134 | 0.9255 |
70
+ | 0.0182 | 20.0 | 12380 | 0.6736 | 0.9023 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.26.1
76
+ - Pytorch 1.13.1+cu116
77
+ - Datasets 2.10.1
78
+ - Tokenizers 0.13.2