initial commit
Browse files- data/lang_bpe_500/HLG.pt +3 -0
- data/lang_bpe_500/L.pt +3 -0
- data/lang_bpe_500/LG.pt +3 -0
- data/lang_bpe_500/Linv.pt +3 -0
- data/lang_bpe_500/bpe.model +3 -0
- data/lang_bpe_500/tokens.txt +502 -0
- data/lang_bpe_500/words.txt +0 -0
- decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/errs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/errs-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/log-decode-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model-2023-03-21-12-56-33 +31 -0
- decoding-results/greedy_search/log-decode-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model-2023-03-21-12-42-29 +31 -0
- decoding-results/greedy_search/recogs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/recogs-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/recogs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/recogs-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +0 -0
- decoding-results/greedy_search/wer-summary-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +2 -0
- decoding-results/greedy_search/wer-summary-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +2 -0
- decoding-results/greedy_search/wer-summary-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt +2 -0
- decoding-results/greedy_search/wer-summary-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt +2 -0
- decoding-results/modified_beam_search/errs-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt +0 -0
- decoding-results/modified_beam_search/errs-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt +0 -0
- decoding-results/modified_beam_search/log-decode-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model-2023-03-21-13-44-53 +34 -0
- decoding-results/modified_beam_search/recogs-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt +0 -0
- decoding-results/modified_beam_search/recogs-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt +0 -0
- decoding-results/modified_beam_search/wer-summary-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt +2 -0
- decoding-results/modified_beam_search/wer-summary-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt +2 -0
- exp/cpu_jit.pt +3 -0
- exp/epoch-30.pt +3 -0
- exp/log/log-train-2023-02-28-10-38-34-0 +0 -0
- exp/log/log-train-2023-02-28-10-38-34-1 +0 -0
- exp/pretrained-epoch-30-avg-1.pt +3 -0
- exp/tensorboard/events.out.tfevents.1677551914.de-74279-k2-train-2-1216192652-5bcf7587b4-n6q9m.65872.0 +3 -0
- test_wavs/1089-134686-0001.wav +0 -0
- test_wavs/1221-135766-0001.wav +0 -0
- test_wavs/1221-135766-0002.wav +0 -0
- test_wavs/trans.txt +3 -0
data/lang_bpe_500/HLG.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5dbbe8b485c0cb37d11e07e8e734990f1e40a2d00fe9689d8da2e7b6fe72883
|
3 |
+
size 845007583
|
data/lang_bpe_500/L.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1b88996f918737fba67fbd29152018b51a537c16ce0718a2b43d5140583224e
|
3 |
+
size 19025703
|
data/lang_bpe_500/LG.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb9f021c7aad79d45dc275ba8154a430c4f660a319dcb872cd52500f25553d6
|
3 |
+
size 249852195
|
data/lang_bpe_500/Linv.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc8b3687a1b8f0811a84106b3b310642566c7b1bc282a929878f9269507a2c6
|
3 |
+
size 19025703
|
data/lang_bpe_500/bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c53433de083c4a6ad12d034550ef22de68cec62c4f58932a7b6b8b2f1e743fa5
|
3 |
+
size 244865
|
data/lang_bpe_500/tokens.txt
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<blk> 0
|
2 |
+
<sos/eos> 1
|
3 |
+
<unk> 2
|
4 |
+
S 3
|
5 |
+
▁THE 4
|
6 |
+
▁A 5
|
7 |
+
T 6
|
8 |
+
▁AND 7
|
9 |
+
ED 8
|
10 |
+
▁OF 9
|
11 |
+
▁TO 10
|
12 |
+
E 11
|
13 |
+
D 12
|
14 |
+
N 13
|
15 |
+
ING 14
|
16 |
+
▁IN 15
|
17 |
+
Y 16
|
18 |
+
M 17
|
19 |
+
C 18
|
20 |
+
▁I 19
|
21 |
+
A 20
|
22 |
+
P 21
|
23 |
+
▁HE 22
|
24 |
+
R 23
|
25 |
+
O 24
|
26 |
+
L 25
|
27 |
+
RE 26
|
28 |
+
I 27
|
29 |
+
U 28
|
30 |
+
ER 29
|
31 |
+
▁IT 30
|
32 |
+
LY 31
|
33 |
+
▁THAT 32
|
34 |
+
▁WAS 33
|
35 |
+
▁ 34
|
36 |
+
▁S 35
|
37 |
+
AR 36
|
38 |
+
▁BE 37
|
39 |
+
F 38
|
40 |
+
▁C 39
|
41 |
+
IN 40
|
42 |
+
B 41
|
43 |
+
▁FOR 42
|
44 |
+
OR 43
|
45 |
+
LE 44
|
46 |
+
' 45
|
47 |
+
▁HIS 46
|
48 |
+
▁YOU 47
|
49 |
+
AL 48
|
50 |
+
▁RE 49
|
51 |
+
V 50
|
52 |
+
▁B 51
|
53 |
+
G 52
|
54 |
+
RI 53
|
55 |
+
▁E 54
|
56 |
+
▁WITH 55
|
57 |
+
▁T 56
|
58 |
+
▁AS 57
|
59 |
+
LL 58
|
60 |
+
▁P 59
|
61 |
+
▁HER 60
|
62 |
+
ST 61
|
63 |
+
▁HAD 62
|
64 |
+
▁SO 63
|
65 |
+
▁F 64
|
66 |
+
W 65
|
67 |
+
CE 66
|
68 |
+
▁IS 67
|
69 |
+
ND 68
|
70 |
+
▁NOT 69
|
71 |
+
TH 70
|
72 |
+
▁BUT 71
|
73 |
+
EN 72
|
74 |
+
▁SHE 73
|
75 |
+
▁ON 74
|
76 |
+
VE 75
|
77 |
+
ON 76
|
78 |
+
SE 77
|
79 |
+
▁DE 78
|
80 |
+
UR 79
|
81 |
+
▁G 80
|
82 |
+
CH 81
|
83 |
+
K 82
|
84 |
+
TER 83
|
85 |
+
▁AT 84
|
86 |
+
IT 85
|
87 |
+
▁ME 86
|
88 |
+
RO 87
|
89 |
+
NE 88
|
90 |
+
RA 89
|
91 |
+
ES 90
|
92 |
+
IL 91
|
93 |
+
NG 92
|
94 |
+
IC 93
|
95 |
+
▁NO 94
|
96 |
+
▁HIM 95
|
97 |
+
ENT 96
|
98 |
+
IR 97
|
99 |
+
▁WE 98
|
100 |
+
H 99
|
101 |
+
▁DO 100
|
102 |
+
▁ALL 101
|
103 |
+
▁HAVE 102
|
104 |
+
LO 103
|
105 |
+
▁BY 104
|
106 |
+
▁MY 105
|
107 |
+
▁MO 106
|
108 |
+
▁THIS 107
|
109 |
+
LA 108
|
110 |
+
▁ST 109
|
111 |
+
▁WHICH 110
|
112 |
+
▁CON 111
|
113 |
+
▁THEY 112
|
114 |
+
CK 113
|
115 |
+
TE 114
|
116 |
+
▁SAID 115
|
117 |
+
▁FROM 116
|
118 |
+
▁GO 117
|
119 |
+
▁WHO 118
|
120 |
+
▁TH 119
|
121 |
+
▁OR 120
|
122 |
+
▁D 121
|
123 |
+
▁W 122
|
124 |
+
VER 123
|
125 |
+
LI 124
|
126 |
+
▁SE 125
|
127 |
+
▁ONE 126
|
128 |
+
▁CA 127
|
129 |
+
▁AN 128
|
130 |
+
▁LA 129
|
131 |
+
▁WERE 130
|
132 |
+
EL 131
|
133 |
+
▁HA 132
|
134 |
+
▁MAN 133
|
135 |
+
▁FA 134
|
136 |
+
▁EX 135
|
137 |
+
AD 136
|
138 |
+
▁SU 137
|
139 |
+
RY 138
|
140 |
+
▁MI 139
|
141 |
+
AT 140
|
142 |
+
▁BO 141
|
143 |
+
▁WHEN 142
|
144 |
+
AN 143
|
145 |
+
THER 144
|
146 |
+
PP 145
|
147 |
+
ATION 146
|
148 |
+
▁FI 147
|
149 |
+
▁WOULD 148
|
150 |
+
▁PRO 149
|
151 |
+
OW 150
|
152 |
+
ET 151
|
153 |
+
▁O 152
|
154 |
+
▁THERE 153
|
155 |
+
▁HO 154
|
156 |
+
ION 155
|
157 |
+
▁WHAT 156
|
158 |
+
▁FE 157
|
159 |
+
▁PA 158
|
160 |
+
US 159
|
161 |
+
MENT 160
|
162 |
+
▁MA 161
|
163 |
+
UT 162
|
164 |
+
▁OUT 163
|
165 |
+
▁THEIR 164
|
166 |
+
▁IF 165
|
167 |
+
▁LI 166
|
168 |
+
▁K 167
|
169 |
+
▁WILL 168
|
170 |
+
▁ARE 169
|
171 |
+
ID 170
|
172 |
+
▁RO 171
|
173 |
+
DE 172
|
174 |
+
TION 173
|
175 |
+
▁WA 174
|
176 |
+
PE 175
|
177 |
+
▁UP 176
|
178 |
+
▁SP 177
|
179 |
+
▁PO 178
|
180 |
+
IGHT 179
|
181 |
+
▁UN 180
|
182 |
+
RU 181
|
183 |
+
▁LO 182
|
184 |
+
AS 183
|
185 |
+
OL 184
|
186 |
+
▁LE 185
|
187 |
+
▁BEEN 186
|
188 |
+
▁SH 187
|
189 |
+
▁RA 188
|
190 |
+
▁SEE 189
|
191 |
+
KE 190
|
192 |
+
UL 191
|
193 |
+
TED 192
|
194 |
+
▁SA 193
|
195 |
+
UN 194
|
196 |
+
UND 195
|
197 |
+
ANT 196
|
198 |
+
▁NE 197
|
199 |
+
IS 198
|
200 |
+
▁THEM 199
|
201 |
+
CI 200
|
202 |
+
GE 201
|
203 |
+
▁COULD 202
|
204 |
+
▁DIS 203
|
205 |
+
OM 204
|
206 |
+
ISH 205
|
207 |
+
HE 206
|
208 |
+
EST 207
|
209 |
+
▁SOME 208
|
210 |
+
ENCE 209
|
211 |
+
ITY 210
|
212 |
+
IVE 211
|
213 |
+
▁US 212
|
214 |
+
▁MORE 213
|
215 |
+
▁EN 214
|
216 |
+
ARD 215
|
217 |
+
ATE 216
|
218 |
+
▁YOUR 217
|
219 |
+
▁INTO 218
|
220 |
+
▁KNOW 219
|
221 |
+
▁CO 220
|
222 |
+
ANCE 221
|
223 |
+
▁TIME 222
|
224 |
+
▁WI 223
|
225 |
+
▁YE 224
|
226 |
+
AGE 225
|
227 |
+
▁NOW 226
|
228 |
+
TI 227
|
229 |
+
FF 228
|
230 |
+
ABLE 229
|
231 |
+
▁VERY 230
|
232 |
+
▁LIKE 231
|
233 |
+
AM 232
|
234 |
+
HI 233
|
235 |
+
Z 234
|
236 |
+
▁OTHER 235
|
237 |
+
▁THAN 236
|
238 |
+
▁LITTLE 237
|
239 |
+
▁DID 238
|
240 |
+
▁LOOK 239
|
241 |
+
TY 240
|
242 |
+
ERS 241
|
243 |
+
▁CAN 242
|
244 |
+
▁CHA 243
|
245 |
+
▁AR 244
|
246 |
+
X 245
|
247 |
+
FUL 246
|
248 |
+
UGH 247
|
249 |
+
▁BA 248
|
250 |
+
▁DAY 249
|
251 |
+
▁ABOUT 250
|
252 |
+
TEN 251
|
253 |
+
IM 252
|
254 |
+
▁ANY 253
|
255 |
+
▁PRE 254
|
256 |
+
▁OVER 255
|
257 |
+
IES 256
|
258 |
+
NESS 257
|
259 |
+
ME 258
|
260 |
+
BLE 259
|
261 |
+
▁M 260
|
262 |
+
ROW 261
|
263 |
+
▁HAS 262
|
264 |
+
▁GREAT 263
|
265 |
+
▁VI 264
|
266 |
+
TA 265
|
267 |
+
▁AFTER 266
|
268 |
+
PER 267
|
269 |
+
▁AGAIN 268
|
270 |
+
HO 269
|
271 |
+
SH 270
|
272 |
+
▁UPON 271
|
273 |
+
▁DI 272
|
274 |
+
▁HAND 273
|
275 |
+
▁COM 274
|
276 |
+
IST 275
|
277 |
+
TURE 276
|
278 |
+
▁STA 277
|
279 |
+
▁THEN 278
|
280 |
+
▁SHOULD 279
|
281 |
+
▁GA 280
|
282 |
+
OUS 281
|
283 |
+
OUR 282
|
284 |
+
▁WELL 283
|
285 |
+
▁ONLY 284
|
286 |
+
MAN 285
|
287 |
+
▁GOOD 286
|
288 |
+
▁TWO 287
|
289 |
+
▁MAR 288
|
290 |
+
▁SAY 289
|
291 |
+
▁HU 290
|
292 |
+
TING 291
|
293 |
+
▁OUR 292
|
294 |
+
RESS 293
|
295 |
+
▁DOWN 294
|
296 |
+
IOUS 295
|
297 |
+
▁BEFORE 296
|
298 |
+
▁DA 297
|
299 |
+
▁NA 298
|
300 |
+
QUI 299
|
301 |
+
▁MADE 300
|
302 |
+
▁EVERY 301
|
303 |
+
▁OLD 302
|
304 |
+
▁EVEN 303
|
305 |
+
IG 304
|
306 |
+
▁COME 305
|
307 |
+
▁GRA 306
|
308 |
+
▁RI 307
|
309 |
+
▁LONG 308
|
310 |
+
OT 309
|
311 |
+
SIDE 310
|
312 |
+
WARD 311
|
313 |
+
▁FO 312
|
314 |
+
▁WHERE 313
|
315 |
+
MO 314
|
316 |
+
LESS 315
|
317 |
+
▁SC 316
|
318 |
+
▁MUST 317
|
319 |
+
▁NEVER 318
|
320 |
+
▁HOW 319
|
321 |
+
▁CAME 320
|
322 |
+
▁SUCH 321
|
323 |
+
▁RU 322
|
324 |
+
▁TAKE 323
|
325 |
+
▁WO 324
|
326 |
+
▁CAR 325
|
327 |
+
UM 326
|
328 |
+
AK 327
|
329 |
+
▁THINK 328
|
330 |
+
▁MUCH 329
|
331 |
+
▁MISTER 330
|
332 |
+
▁MAY 331
|
333 |
+
▁JO 332
|
334 |
+
▁WAY 333
|
335 |
+
▁COMP 334
|
336 |
+
▁THOUGHT 335
|
337 |
+
▁STO 336
|
338 |
+
▁MEN 337
|
339 |
+
▁BACK 338
|
340 |
+
▁DON 339
|
341 |
+
J 340
|
342 |
+
▁LET 341
|
343 |
+
▁TRA 342
|
344 |
+
▁FIRST 343
|
345 |
+
▁JUST 344
|
346 |
+
▁VA 345
|
347 |
+
▁OWN 346
|
348 |
+
▁PLA 347
|
349 |
+
▁MAKE 348
|
350 |
+
ATED 349
|
351 |
+
▁HIMSELF 350
|
352 |
+
▁WENT 351
|
353 |
+
▁PI 352
|
354 |
+
GG 353
|
355 |
+
RING 354
|
356 |
+
▁DU 355
|
357 |
+
▁MIGHT 356
|
358 |
+
▁PART 357
|
359 |
+
▁GIVE 358
|
360 |
+
▁IMP 359
|
361 |
+
▁BU 360
|
362 |
+
▁PER 361
|
363 |
+
▁PLACE 362
|
364 |
+
▁HOUSE 363
|
365 |
+
▁THROUGH 364
|
366 |
+
IAN 365
|
367 |
+
▁SW 366
|
368 |
+
▁UNDER 367
|
369 |
+
QUE 368
|
370 |
+
▁AWAY 369
|
371 |
+
▁LOVE 370
|
372 |
+
QUA 371
|
373 |
+
▁LIFE 372
|
374 |
+
▁GET 373
|
375 |
+
▁WITHOUT 374
|
376 |
+
▁PASS 375
|
377 |
+
▁TURN 376
|
378 |
+
IGN 377
|
379 |
+
▁HEAD 378
|
380 |
+
▁MOST 379
|
381 |
+
▁THOSE 380
|
382 |
+
▁SHALL 381
|
383 |
+
▁EYES 382
|
384 |
+
▁COL 383
|
385 |
+
▁STILL 384
|
386 |
+
▁NIGHT 385
|
387 |
+
▁NOTHING 386
|
388 |
+
ITION 387
|
389 |
+
HA 388
|
390 |
+
▁TELL 389
|
391 |
+
▁WORK 390
|
392 |
+
▁LAST 391
|
393 |
+
▁NEW 392
|
394 |
+
▁FACE 393
|
395 |
+
▁HI 394
|
396 |
+
▁WORD 395
|
397 |
+
▁FOUND 396
|
398 |
+
▁COUNT 397
|
399 |
+
▁OB 398
|
400 |
+
▁WHILE 399
|
401 |
+
▁SHA 400
|
402 |
+
▁MEAN 401
|
403 |
+
▁SAW 402
|
404 |
+
▁PEOPLE 403
|
405 |
+
▁FRIEND 404
|
406 |
+
▁THREE 405
|
407 |
+
▁ROOM 406
|
408 |
+
▁SAME 407
|
409 |
+
▁THOUGH 408
|
410 |
+
▁RIGHT 409
|
411 |
+
▁CHILD 410
|
412 |
+
▁FATHER 411
|
413 |
+
▁ANOTHER 412
|
414 |
+
▁HEART 413
|
415 |
+
▁WANT 414
|
416 |
+
▁TOOK 415
|
417 |
+
OOK 416
|
418 |
+
▁LIGHT 417
|
419 |
+
▁MISSUS 418
|
420 |
+
▁OPEN 419
|
421 |
+
▁JU 420
|
422 |
+
▁ASKED 421
|
423 |
+
PORT 422
|
424 |
+
▁LEFT 423
|
425 |
+
▁JA 424
|
426 |
+
▁WORLD 425
|
427 |
+
▁HOME 426
|
428 |
+
▁WHY 427
|
429 |
+
▁ALWAYS 428
|
430 |
+
▁ANSWER 429
|
431 |
+
▁SEEMED 430
|
432 |
+
▁SOMETHING 431
|
433 |
+
▁GIRL 432
|
434 |
+
▁BECAUSE 433
|
435 |
+
▁NAME 434
|
436 |
+
▁TOLD 435
|
437 |
+
▁NI 436
|
438 |
+
▁HIGH 437
|
439 |
+
IZE 438
|
440 |
+
▁WOMAN 439
|
441 |
+
▁FOLLOW 440
|
442 |
+
▁RETURN 441
|
443 |
+
▁KNEW 442
|
444 |
+
▁EACH 443
|
445 |
+
▁KIND 444
|
446 |
+
▁JE 445
|
447 |
+
▁ACT 446
|
448 |
+
▁LU 447
|
449 |
+
▁CERTAIN 448
|
450 |
+
▁YEARS 449
|
451 |
+
▁QUITE 450
|
452 |
+
▁APPEAR 451
|
453 |
+
▁BETTER 452
|
454 |
+
▁HALF 453
|
455 |
+
▁PRESENT 454
|
456 |
+
▁PRINCE 455
|
457 |
+
SHIP 456
|
458 |
+
▁ALSO 457
|
459 |
+
▁BEGAN 458
|
460 |
+
▁HAVING 459
|
461 |
+
▁ENOUGH 460
|
462 |
+
▁PERSON 461
|
463 |
+
▁LADY 462
|
464 |
+
▁WHITE 463
|
465 |
+
▁COURSE 464
|
466 |
+
▁VOICE 465
|
467 |
+
▁SPEAK 466
|
468 |
+
▁POWER 467
|
469 |
+
▁MORNING 468
|
470 |
+
▁BETWEEN 469
|
471 |
+
▁AMONG 470
|
472 |
+
▁KEEP 471
|
473 |
+
▁WALK 472
|
474 |
+
▁MATTER 473
|
475 |
+
▁TEA 474
|
476 |
+
▁BELIEVE 475
|
477 |
+
▁SMALL 476
|
478 |
+
▁TALK 477
|
479 |
+
▁FELT 478
|
480 |
+
▁HORSE 479
|
481 |
+
▁MYSELF 480
|
482 |
+
▁SIX 481
|
483 |
+
▁HOWEVER 482
|
484 |
+
▁FULL 483
|
485 |
+
▁HERSELF 484
|
486 |
+
▁POINT 485
|
487 |
+
▁STOOD 486
|
488 |
+
▁HUNDRED 487
|
489 |
+
▁ALMOST 488
|
490 |
+
▁SINCE 489
|
491 |
+
▁LARGE 490
|
492 |
+
▁LEAVE 491
|
493 |
+
▁PERHAPS 492
|
494 |
+
▁DARK 493
|
495 |
+
▁SUDDEN 494
|
496 |
+
▁REPLIED 495
|
497 |
+
▁ANYTHING 496
|
498 |
+
▁WONDER 497
|
499 |
+
▁UNTIL 498
|
500 |
+
Q 499
|
501 |
+
#0 500
|
502 |
+
#1 501
|
data/lang_bpe_500/words.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/errs-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/log-decode-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model-2023-03-21-12-56-33
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-21 12:56:33,933 INFO [decode.py:690] Decoding started
|
2 |
+
2023-03-21 12:56:33,934 INFO [decode.py:696] Device: cuda:0
|
3 |
+
2023-03-21 12:56:33,936 INFO [decode.py:706] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'd3145cd-dirty', 'icefall-git-date': 'Thu Feb 16 15:24:55 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-10-0221105906-5745685d6b-t8zzx', 'IP address': '10.177.57.19'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'simulate_streaming': False, 'decode_chunk_size': 16, 'left_context': 64, 'num_encoder_layers': '2,2,2,2,2', 'feedforward_dims': '256,256,512,512,256', 'nhead': '4,4,4,4,4', 'encoder_dims': '128,128,128,128,128', 'attention_dims': '96,96,96,96,96', 'encoder_unmasked_dims': '96,96,96,96,96', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search'), 'suffix': 'epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-03-21 12:56:33,936 INFO [decode.py:708] About to create model
|
5 |
+
2023-03-21 12:56:34,079 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-03-21 12:56:34,087 INFO [train.py:536] Use giga
|
7 |
+
2023-03-21 12:56:34,090 INFO [decode.py:779] Calculating the averaged model over epoch range from 29 (excluded) to 30
|
8 |
+
2023-03-21 12:56:36,457 INFO [decode.py:813] Number of model parameters: 6061029
|
9 |
+
2023-03-21 12:56:36,457 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
10 |
+
2023-03-21 12:56:36,458 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
11 |
+
2023-03-21 12:56:40,212 INFO [decode.py:592] batch 0/?, cuts processed until now is 26
|
12 |
+
2023-03-21 12:57:18,846 INFO [decode.py:592] batch 50/?, cuts processed until now is 2526
|
13 |
+
2023-03-21 12:57:22,546 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/recogs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
14 |
+
2023-03-21 12:57:22,645 INFO [utils.py:558] [test-clean-greedy_search] %WER 6.04% [3173 / 52576, 340 ins, 306 del, 2527 sub ]
|
15 |
+
2023-03-21 12:57:22,851 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/errs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
16 |
+
2023-03-21 12:57:22,866 INFO [decode.py:637]
|
17 |
+
For test-clean, WER of different settings are:
|
18 |
+
greedy_search 6.04 best for test-clean
|
19 |
+
|
20 |
+
2023-03-21 12:57:24,870 INFO [decode.py:592] batch 0/?, cuts processed until now is 30
|
21 |
+
2023-03-21 12:57:29,066 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.3041, 1.5690, 1.5069, 1.2777], device='cuda:0'), covar=tensor([0.2984, 0.2516, 0.1772, 0.2404], device='cuda:0'), in_proj_covar=tensor([0.2077, 0.2042, 0.1947, 0.2094], device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002], device='cuda:0')
|
22 |
+
2023-03-21 12:57:56,255 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.2700, 1.9217, 1.5033, 0.4634], device='cuda:0'), covar=tensor([0.4861, 0.3328, 0.4618, 0.7099], device='cuda:0'), in_proj_covar=tensor([0.1863, 0.1746, 0.1668, 0.1515], device='cuda:0'), out_proj_covar=tensor([0.0005, 0.0005, 0.0004, 0.0004], device='cuda:0')
|
23 |
+
2023-03-21 12:57:59,184 INFO [decode.py:592] batch 50/?, cuts processed until now is 2840
|
24 |
+
2023-03-21 12:58:02,446 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/recogs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
25 |
+
2023-03-21 12:58:02,551 INFO [utils.py:558] [test-other-greedy_search] %WER 15.06% [7882 / 52343, 827 ins, 900 del, 6155 sub ]
|
26 |
+
2023-03-21 12:58:02,776 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/errs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
27 |
+
2023-03-21 12:58:02,776 INFO [decode.py:637]
|
28 |
+
For test-other, WER of different settings are:
|
29 |
+
greedy_search 15.06 best for test-other
|
30 |
+
|
31 |
+
2023-03-21 12:58:02,777 INFO [decode.py:845] Done!
|
decoding-results/greedy_search/log-decode-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model-2023-03-21-12-42-29
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-21 12:42:29,212 INFO [decode.py:690] Decoding started
|
2 |
+
2023-03-21 12:42:29,212 INFO [decode.py:696] Device: cuda:0
|
3 |
+
2023-03-21 12:42:29,235 INFO [decode.py:706] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'd3145cd-dirty', 'icefall-git-date': 'Thu Feb 16 15:24:55 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-10-0221105906-5745685d6b-t8zzx', 'IP address': '10.177.57.19'}, 'epoch': 30, 'iter': 0, 'avg': 10, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'simulate_streaming': False, 'decode_chunk_size': 16, 'left_context': 64, 'num_encoder_layers': '2,2,2,2,2', 'feedforward_dims': '256,256,512,512,256', 'nhead': '4,4,4,4,4', 'encoder_dims': '128,128,128,128,128', 'attention_dims': '96,96,96,96,96', 'encoder_unmasked_dims': '96,96,96,96,96', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search'), 'suffix': 'epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-03-21 12:42:29,235 INFO [decode.py:708] About to create model
|
5 |
+
2023-03-21 12:42:29,390 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-03-21 12:42:29,398 INFO [train.py:536] Use giga
|
7 |
+
2023-03-21 12:42:29,401 INFO [decode.py:779] Calculating the averaged model over epoch range from 20 (excluded) to 30
|
8 |
+
2023-03-21 12:42:31,968 INFO [decode.py:813] Number of model parameters: 6061029
|
9 |
+
2023-03-21 12:42:31,968 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
10 |
+
2023-03-21 12:42:31,977 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
11 |
+
2023-03-21 12:42:35,929 INFO [decode.py:592] batch 0/?, cuts processed until now is 26
|
12 |
+
2023-03-21 12:43:11,716 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.0073, 1.5345, 1.5496, 1.3240], device='cuda:0'), covar=tensor([0.2695, 0.1998, 0.2626, 0.2169], device='cuda:0'), in_proj_covar=tensor([0.0488, 0.0749, 0.0718, 0.0687], device='cuda:0'), out_proj_covar=tensor([0.0007, 0.0010, 0.0010, 0.0009], device='cuda:0')
|
13 |
+
2023-03-21 12:43:13,944 INFO [decode.py:592] batch 50/?, cuts processed until now is 2526
|
14 |
+
2023-03-21 12:43:17,637 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/recogs-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
15 |
+
2023-03-21 12:43:17,736 INFO [utils.py:558] [test-clean-greedy_search] %WER 6.11% [3215 / 52576, 343 ins, 302 del, 2570 sub ]
|
16 |
+
2023-03-21 12:43:17,965 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/errs-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
17 |
+
2023-03-21 12:43:17,966 INFO [decode.py:637]
|
18 |
+
For test-clean, WER of different settings are:
|
19 |
+
greedy_search 6.11 best for test-clean
|
20 |
+
|
21 |
+
2023-03-21 12:43:20,725 INFO [decode.py:592] batch 0/?, cuts processed until now is 30
|
22 |
+
2023-03-21 12:43:58,180 INFO [decode.py:592] batch 50/?, cuts processed until now is 2840
|
23 |
+
2023-03-21 12:43:59,263 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.4355, 1.8449, 1.4393, 1.3780], device='cuda:0'), covar=tensor([0.3140, 0.2956, 0.3352, 0.2758], device='cuda:0'), in_proj_covar=tensor([0.1560, 0.1123, 0.1377, 0.1001], device='cuda:0'), out_proj_covar=tensor([0.0014, 0.0012, 0.0013, 0.0009], device='cuda:0')
|
24 |
+
2023-03-21 12:44:02,632 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/recogs-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
25 |
+
2023-03-21 12:44:02,732 INFO [utils.py:558] [test-other-greedy_search] %WER 15.28% [7998 / 52343, 819 ins, 936 del, 6243 sub ]
|
26 |
+
2023-03-21 12:44:02,954 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/errs-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
|
27 |
+
2023-03-21 12:44:02,955 INFO [decode.py:637]
|
28 |
+
For test-other, WER of different settings are:
|
29 |
+
greedy_search 15.28 best for test-other
|
30 |
+
|
31 |
+
2023-03-21 12:44:02,955 INFO [decode.py:845] Done!
|
decoding-results/greedy_search/recogs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/recogs-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/recogs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/recogs-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/greedy_search/wer-summary-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
greedy_search 6.04
|
decoding-results/greedy_search/wer-summary-test-clean-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
greedy_search 6.11
|
decoding-results/greedy_search/wer-summary-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
greedy_search 15.06
|
decoding-results/greedy_search/wer-summary-test-other-greedy_search-epoch-30-avg-10-context-2-max-sym-per-frame-1-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
greedy_search 15.28
|
decoding-results/modified_beam_search/errs-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/modified_beam_search/errs-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/modified_beam_search/log-decode-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model-2023-03-21-13-44-53
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-21 13:44:53,273 INFO [decode.py:690] Decoding started
|
2 |
+
2023-03-21 13:44:53,274 INFO [decode.py:696] Device: cuda:0
|
3 |
+
2023-03-21 13:44:53,281 INFO [decode.py:706] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'd3145cd-dirty', 'icefall-git-date': 'Thu Feb 16 15:24:55 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-10-0221105906-5745685d6b-t8zzx', 'IP address': '10.177.57.19'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'modified_beam_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'simulate_streaming': False, 'decode_chunk_size': 16, 'left_context': 64, 'num_encoder_layers': '2,2,2,2,2', 'feedforward_dims': '256,256,512,512,256', 'nhead': '4,4,4,4,4', 'encoder_dims': '128,128,128,128,128', 'attention_dims': '96,96,96,96,96', 'encoder_unmasked_dims': '96,96,96,96,96', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M/modified_beam_search'), 'suffix': 'epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
|
4 |
+
2023-03-21 13:44:53,281 INFO [decode.py:708] About to create model
|
5 |
+
2023-03-21 13:44:53,427 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
|
6 |
+
2023-03-21 13:44:53,435 INFO [train.py:536] Use giga
|
7 |
+
2023-03-21 13:44:53,438 INFO [decode.py:779] Calculating the averaged model over epoch range from 29 (excluded) to 30
|
8 |
+
2023-03-21 13:44:55,938 INFO [decode.py:813] Number of model parameters: 6061029
|
9 |
+
2023-03-21 13:44:55,938 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
|
10 |
+
2023-03-21 13:44:55,947 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
|
11 |
+
2023-03-21 13:45:03,046 INFO [decode.py:592] batch 0/?, cuts processed until now is 26
|
12 |
+
2023-03-21 13:46:18,846 INFO [decode.py:592] batch 20/?, cuts processed until now is 1545
|
13 |
+
2023-03-21 13:47:05,883 INFO [decode.py:592] batch 40/?, cuts processed until now is 2375
|
14 |
+
2023-03-21 13:47:07,579 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.4154, 1.2778, 1.1482, 1.5772], device='cuda:0'), covar=tensor([0.0857, 0.0405, 0.0402, 0.0997], device='cuda:0'), in_proj_covar=tensor([0.0195, 0.0123, 0.0121, 0.0232], device='cuda:0'), out_proj_covar=tensor([0.0107, 0.0076, 0.0067, 0.0117], device='cuda:0')
|
15 |
+
2023-03-21 13:47:32,569 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/modified_beam_search/recogs-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
|
16 |
+
2023-03-21 13:47:32,668 INFO [utils.py:558] [test-clean-beam_size_4] %WER 5.79% [3044 / 52576, 344 ins, 283 del, 2417 sub ]
|
17 |
+
2023-03-21 13:47:32,999 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/modified_beam_search/errs-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
|
18 |
+
2023-03-21 13:47:33,006 INFO [decode.py:637]
|
19 |
+
For test-clean, WER of different settings are:
|
20 |
+
beam_size_4 5.79 best for test-clean
|
21 |
+
|
22 |
+
2023-03-21 13:47:38,189 INFO [decode.py:592] batch 0/?, cuts processed until now is 30
|
23 |
+
2023-03-21 13:47:52,805 INFO [zipformer.py:2441] attn_weights_entropy = tensor([2.2750, 1.3069, 3.4282, 3.1751], device='cuda:0'), covar=tensor([0.1717, 0.2875, 0.0558, 0.0988], device='cuda:0'), in_proj_covar=tensor([0.0816, 0.0679, 0.1016, 0.0992], device='cuda:0'), out_proj_covar=tensor([0.0011, 0.0010, 0.0011, 0.0012], device='cuda:0')
|
24 |
+
2023-03-21 13:48:55,576 INFO [decode.py:592] batch 20/?, cuts processed until now is 1771
|
25 |
+
2023-03-21 13:49:08,575 INFO [zipformer.py:2441] attn_weights_entropy = tensor([2.2201, 1.2812, 3.5021, 3.1816], device='cuda:0'), covar=tensor([0.1809, 0.2933, 0.0553, 0.1024], device='cuda:0'), in_proj_covar=tensor([0.0816, 0.0679, 0.1016, 0.0992], device='cuda:0'), out_proj_covar=tensor([0.0011, 0.0010, 0.0011, 0.0012], device='cuda:0')
|
26 |
+
2023-03-21 13:49:39,149 INFO [decode.py:592] batch 40/?, cuts processed until now is 2696
|
27 |
+
2023-03-21 13:50:02,629 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/modified_beam_search/recogs-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
|
28 |
+
2023-03-21 13:50:02,738 INFO [utils.py:558] [test-other-beam_size_4] %WER 14.38% [7525 / 52343, 869 ins, 749 del, 5907 sub ]
|
29 |
+
2023-03-21 13:50:02,957 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/modified_beam_search/errs-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
|
30 |
+
2023-03-21 13:50:02,958 INFO [decode.py:637]
|
31 |
+
For test-other, WER of different settings are:
|
32 |
+
beam_size_4 14.38 best for test-other
|
33 |
+
|
34 |
+
2023-03-21 13:50:02,958 INFO [decode.py:845] Done!
|
decoding-results/modified_beam_search/recogs-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/modified_beam_search/recogs-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
decoding-results/modified_beam_search/wer-summary-test-clean-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_size_4 5.79
|
decoding-results/modified_beam_search/wer-summary-test-other-beam_size_4-epoch-30-avg-1-modified_beam_search-beam-size-4-use-averaged-model.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
settings WER
|
2 |
+
beam_size_4 14.38
|
exp/cpu_jit.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f74e62d8f0190a79c4de28f39b08b19d9cba9cae2d3332c651ea1489c80fe12
|
3 |
+
size 50059462
|
exp/epoch-30.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13a338ace5aacba9a8351d257f904f6514583665fb513e83ad0a7794fa3b8285
|
3 |
+
size 97434465
|
exp/log/log-train-2023-02-28-10-38-34-0
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp/log/log-train-2023-02-28-10-38-34-1
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp/pretrained-epoch-30-avg-1.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e32b64dca464a97f79b025b43c0b6442f726b8f816fc1d5f8c242af6b347b600
|
3 |
+
size 24440027
|
exp/tensorboard/events.out.tfevents.1677551914.de-74279-k2-train-2-1216192652-5bcf7587b4-n6q9m.65872.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:013ae7fb82a1637bb90f74e8ce175e5baaca880ad5167075027eb48e6479366a
|
3 |
+
size 28462708
|
test_wavs/1089-134686-0001.wav
ADDED
Binary file (212 kB). View file
|
|
test_wavs/1221-135766-0001.wav
ADDED
Binary file (535 kB). View file
|
|
test_wavs/1221-135766-0002.wav
ADDED
Binary file (154 kB). View file
|
|
test_wavs/trans.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
1089-134686-0001 AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
2 |
+
1221-135766-0001 GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
3 |
+
1221-135766-0002 YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|